

Multiplication is Repeated Addition

Arrays can be used to show that multiplication is repeated addition.

Addition:

$$2 + 2 + 2 = 6$$

Multiplication:

3 groups of 2 is 6

3 times 2 equals 6

$$3 \times 2 = 6$$

Q1) Using repeated addition, fill in the blanks to describe the models.

[1]		$2 + 2 + 2$ = _____	$3 \times 2 =$ _____
[2]		$3 + 3 + 3$ = _____	$3 \times 3 =$ _____
[3]		$4 + 4$ = _____	$2 \times 4 =$ _____
[4]		$1 + 1 + 1 + 1 + 1$ = _____	$5 \times 1 =$ _____

EQUAL GROUPS

$$3 \times 6 = 18$$

TOTAL #

OF GROUPS

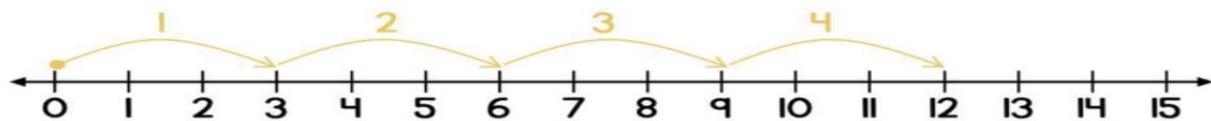
IN EACH GROUP

Q2) Complete the multiplication sentence using equal groups strategy.

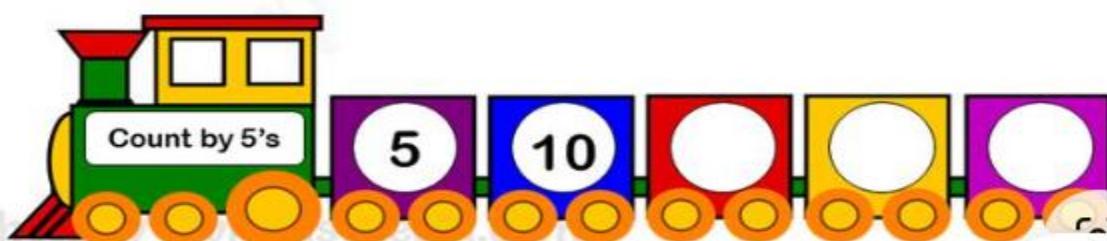
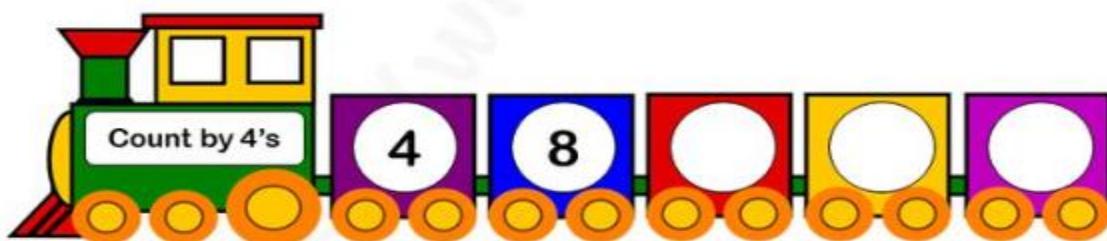
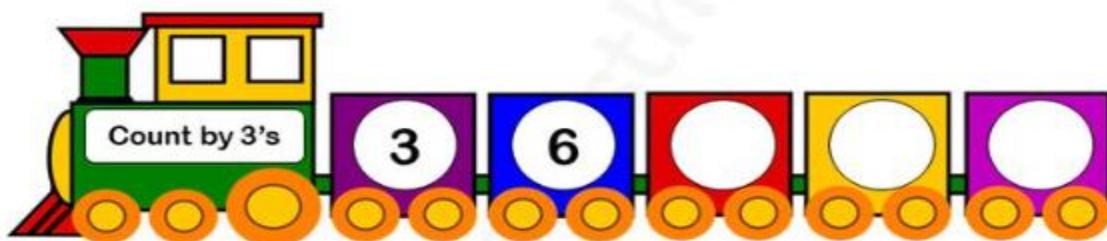
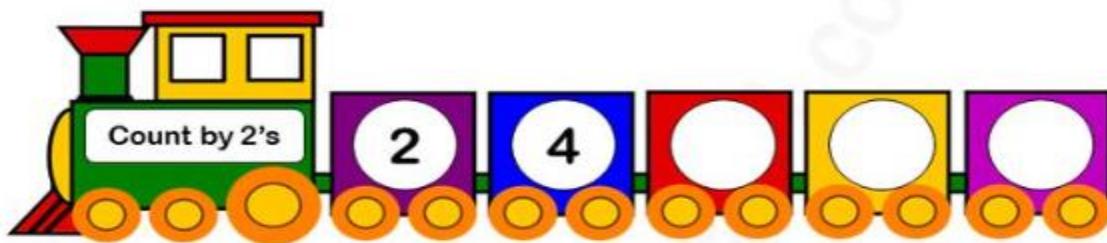
$$\underline{\quad} \times \underline{\quad} = \underline{\quad}$$

$$\underline{\quad} \times \underline{\quad} = \underline{\quad}$$

$$\underline{\quad} \times \underline{\quad} = \underline{\quad}$$


$$\underline{\quad} \times \underline{\quad} = \underline{\quad}$$

$$\underline{\quad} \times \underline{\quad} = \underline{\quad}$$





$$\underline{\quad} \times \underline{\quad} = \underline{\quad}$$

4 jumps of 3

$$4 \times 3 = 12$$

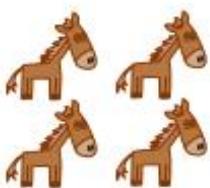
Q3) Using skip counting, find the missing numbers.

$$\begin{array}{r}
 \times \\
 3 \\
 \hline
 5 \\
 \hline
 5 \times 3 = 15
 \end{array}$$

$$\begin{array}{r}
 \times \\
 5 \\
 \hline
 3 \\
 \hline
 3 \times 5 = 15
 \end{array}$$

Q4) Using array, complete the following.

$$4 \times \boxed{2} = 8$$


$$\boxed{} \times 4 = 4$$

$$\boxed{} \times 3 = 9$$

$$5 \times \boxed{} = 10$$

$$\boxed{} \times 2 = 4$$

$$2 \times \boxed{} = 6$$

Any number multiplied by 1 always equals the same number.

Any number multiplied by 0 always equals zero.

Q5) Practice multiplying by 1:

8 groups of 1 are equal to

$$\square \times 1 = \square$$

6 groups of 1 are equal to

$$\square \times 1 = \square$$

5 groups of 1 are equal to

$$\square \times 1 = \square$$

4 groups of 1 are equal to

$$\square \times 1 = \square$$

Q6) Practice multiplying by 1 and 0:

a $12 \times 0 = \square$

b $6 \times 1 = \square$

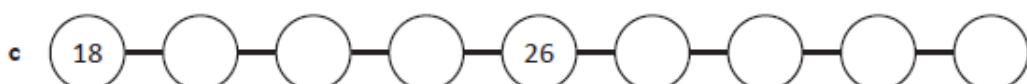
c $3 \times 0 = \square$

d $2 \times 1 = \square$

e $8 \times 0 = \square$

f $20 \times 1 = \square$

Q7) Complete this grid:


x	9	10	6	1	5	4	7	3	8	2
0										
1										

Counting in 2s will help you know many times table facts.

Q8) Complete each pattern by counting in 2s:

a 2 4

b 32 34

c 18 26

Q9) Show how many dots there are in each array by counting in 2s. Then write the times table fact below:

a 6 twos

$$\boxed{} \times 2 = \boxed{}$$

b 8 twos

$$\boxed{} \times 2 = \boxed{}$$

c 3 twos

$$\boxed{} \times 2 = \boxed{}$$


d 5 twos

$$\boxed{} \times 2 = \boxed{}$$

e 4 twos

$$\boxed{} \times 2 = \boxed{}$$

f 9 twos

$$\boxed{} \times 2 = \boxed{}$$

Q10) How many straws are in:

a 3 drinks?

$$\boxed{\quad} \times 2 = \boxed{\quad}$$

b 10 drinks?

$$\boxed{\quad} \times 2 = \boxed{\quad}$$

c 5 drinks?

$$\boxed{\quad} \times 2 = \boxed{\quad}$$

d 2 drinks?

$$\boxed{\quad} \times 2 = \boxed{\quad}$$

Q11) How many wheels are on:

a 4 bikes?

$$\boxed{\quad} \times 2 = \boxed{\quad}$$

b 9 bikes?

$$\boxed{\quad} \times 2 = \boxed{\quad}$$

c 7 bikes?

$$\boxed{\quad} \times 2 = \boxed{\quad}$$

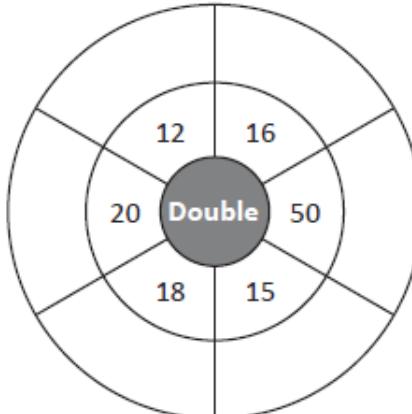
d 3 bikes?

$$\boxed{\quad} \times 2 = \boxed{\quad}$$

Q12) Double each number:

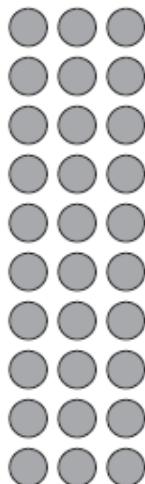
a $6 \times 2 = \boxed{\quad}$

b $9 \times 2 = \boxed{\quad}$


Multiplying by 2 is the same as doubling.

c $8 \times 2 = \boxed{\quad}$

d $7 \times 2 = \boxed{\quad}$



Q13) Complete this doubling wheel. These facts are not in the 2 times table, but they are facts that are useful to know.

Practice your 3 times table.

Q14) Use this array to complete the 3 times table:

$$\begin{array}{l}
 1 \times 3 = \boxed{} \\
 2 \times 3 = \boxed{} \\
 3 \times 3 = \boxed{} \\
 4 \times 3 = \boxed{} \\
 5 \times 3 = \boxed{} \\
 6 \times 3 = \boxed{} \\
 7 \times 3 = \boxed{} \\
 8 \times 3 = \boxed{} \\
 9 \times 3 = \boxed{} \\
 10 \times 3 = \boxed{}
 \end{array}$$

Now try them mixed up:

$$\begin{array}{ll}
 \mathbf{a} \ 3 \times 3 = \boxed{} & \mathbf{b} \ 8 \times 3 = \boxed{} \\
 \mathbf{c} \ 7 \times 3 = \boxed{} & \mathbf{d} \ 10 \times 3 = \boxed{} \\
 \mathbf{e} \ 2 \times 3 = \boxed{} & \mathbf{f} \ 4 \times 3 = \boxed{} \\
 \mathbf{g} \ 5 \times 3 = \boxed{} & \mathbf{h} \ 6 \times 3 = \boxed{} \\
 \mathbf{i} \ 9 \times 3 = \boxed{} & \mathbf{j} \ 1 \times 3 = \boxed{}
 \end{array}$$

Q15) Alfred is an alien from the Planet Trampolon. The surface of Planet Trampolon is like walking on a trampoline. That's why Alfred and all his race of aliens need 3 legs for extra balance. They also have 3 fingers on each hand and 3 eyes.

a) How many legs for:

6 aliens?

$$6 \times \boxed{} = \boxed{}$$

4 aliens?

$$4 \times \boxed{} = \boxed{}$$

b) How many eyes for:

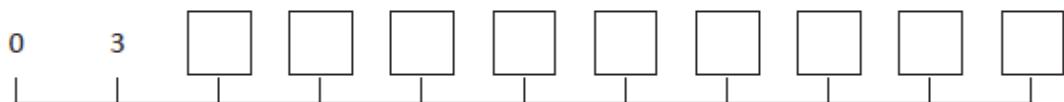
3 aliens?

$$\boxed{} \times \boxed{} = \boxed{}$$

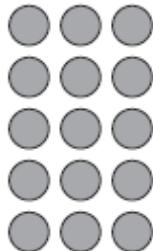
10 aliens?

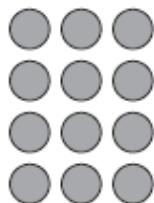
$$\boxed{} \times \boxed{} = \boxed{}$$

c) How many fingers on one hand for:


9 aliens?

$$\boxed{} \times \boxed{} = \boxed{}$$



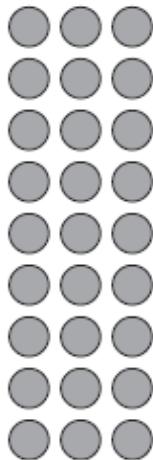
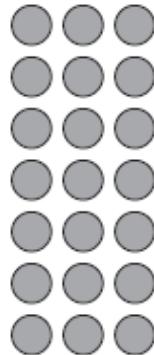
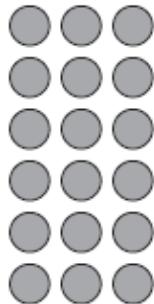

5 aliens?

$$\boxed{} \times \boxed{} = \boxed{}$$

Q16) Label the number line so it goes up in 3s:

Q17) Write two turnaround facts for each array. The first one has been done for you.

a $\boxed{4} \times \boxed{3} = \boxed{12}$




b $\boxed{\quad} \times \boxed{\quad} = \boxed{\quad}$

c $\boxed{\quad} \times \boxed{\quad} = \boxed{\quad}$

$\boxed{3} \times \boxed{4} = \boxed{12}$

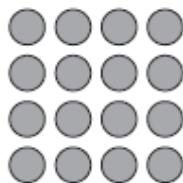
$\boxed{\quad} \times \boxed{\quad} = \boxed{\quad}$

$\boxed{\quad} \times \boxed{\quad} = \boxed{\quad}$

d $\boxed{\quad} \times \boxed{\quad} = \boxed{\quad}$

e $\boxed{\quad} \times \boxed{\quad} = \boxed{\quad}$

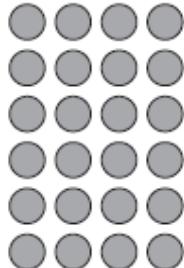
f $\boxed{\quad} \times \boxed{\quad} = \boxed{\quad}$


Practice your 4 times table.

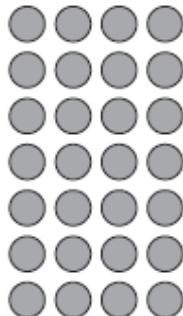
Q18) Write the multiplication fact for each array:

a 3 fours

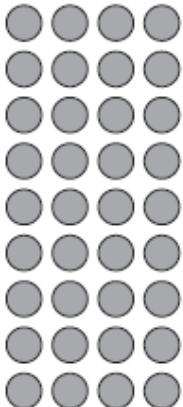
$$\boxed{\quad} \times 4 = \boxed{\quad}$$


b 4 fours

$$\boxed{\quad} \times 4 = \boxed{\quad}$$


c 5 fours

$$\boxed{\quad} \times 4 = \boxed{\quad}$$


d 6 fours

$$\boxed{\quad} \times 4 = \boxed{\quad}$$

e 7 fours

$$\boxed{\quad} \times 4 = \boxed{\quad}$$

f 9 fours

$$\boxed{\quad} \times 4 = \boxed{\quad}$$

Q19) How many cupcakes are there on:

a 4 plates?

$$\boxed{\quad} \times 4 = \boxed{\quad}$$

b 3 plates?

$$\boxed{\quad} \times 4 = \boxed{\quad}$$

c 7 plates?

$$\boxed{\quad} \times 4 = \boxed{\quad}$$

d 9 plates?

$$\boxed{\quad} \times 4 = \boxed{\quad}$$

e 2 plates?

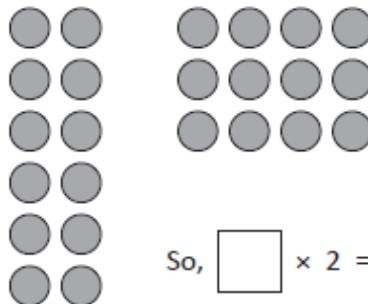
$$\boxed{\quad} \times 4 = \boxed{\quad}$$

Q20) Here is a half of a hundred grid:

a Circle the counting pattern of 2s.
Cross out the counting pattern of 4s.

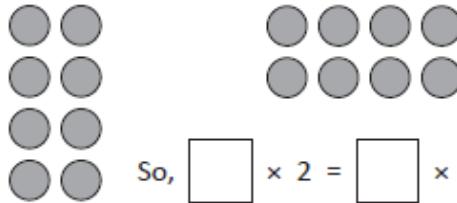
b What do you notice?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50



Q21) Complete the matching $\times 2$ and $\times 4$ facts:

a $6 \times 2 = 12$ and $3 \times 4 = 12$



So, $\square \times 2 = \square \times 4$

Can you see that the $\times 4$ arrays have half the rows and double the columns of the $\times 2$? This means there is the same total, but the array is arranged differently.

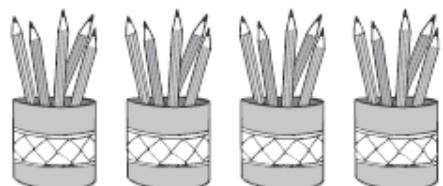
b $\square \times 2 = \square$ and $\square \times 4 = \square$

So, $\square \times 2 = \square \times 4$

c $8 \times 2 = \square \times 4$

d $10 \times 2 = \square \times 4$

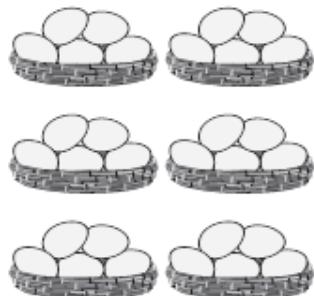
Use repeated addition to find the total number of fingers.



$$5 + 5 + 5 = 15$$

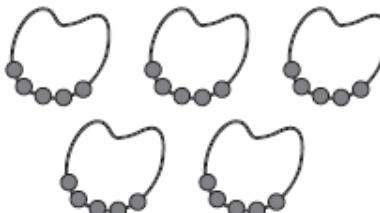
3 groups of 5 is equal to 15.

Q22) Find the total of each group by using repeated addition.


a How many pencils?

$$\square + \square + \square + \square = \square$$

\square groups of \square is equal to \square


b How many eggs?

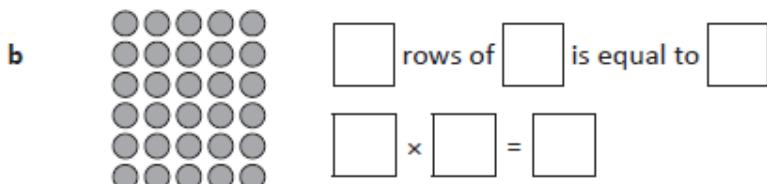
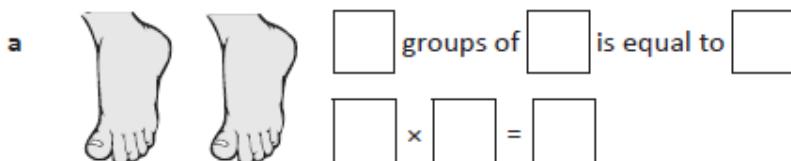
$$\square + \square + \square + \square + \square + \square = \square$$

\square groups of \square is equal to \square

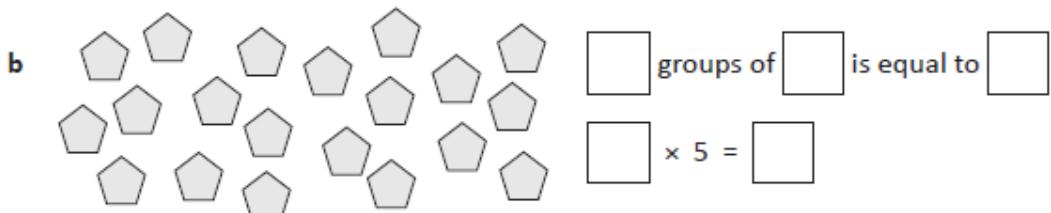
c How many beads?

$$\square + \square + \square + \square + \square = \square$$

\square groups of \square is equal to \square

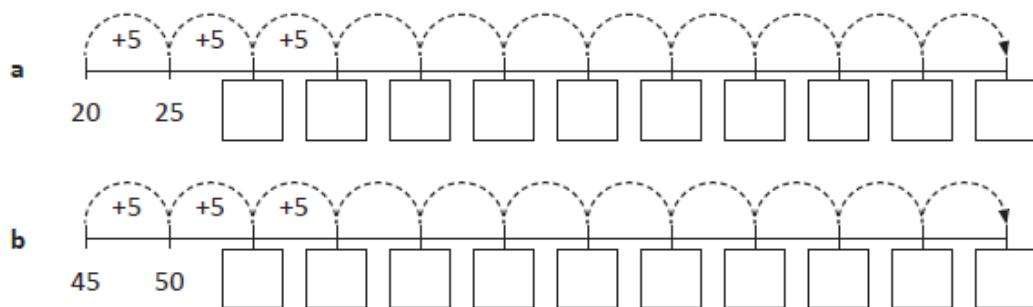


This is a multiplication symbol \times and it means “groups of.”

So instead of repeated addition, we can use a multiplication symbol.

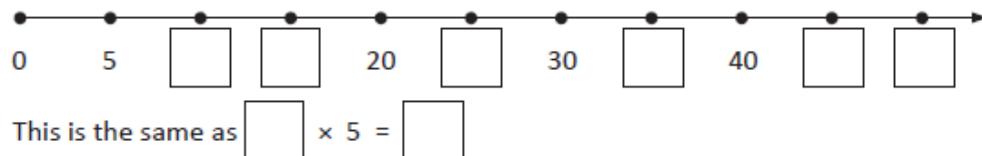

$$5 + 5 + 5 + 5 + 5 = 25$$

$$5 \times 5 = 25$$

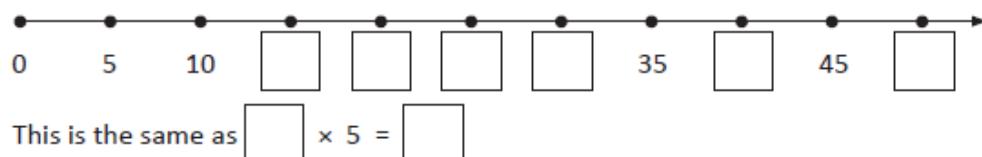
Q23) Find the total of each group by using repeated addition:


Q24) Ring the shapes in groups of 5. One group is ringed for you. Then complete the multiplication fact.

Here is a skip counting pattern on a hundred grid. It shows a counting pattern of 5.


1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Q25) Finish each pattern by counting in 5s:



Q26) Show $\times 5$ multiplication facts on each number line.

a Finish labeling this number line and then show 5 jumps starting from 0:

b Finish labeling this number line and then show 7 jumps starting from 0:

Q27) Write a 5 times table fact for each set of 5 cent coins. The first one has been done for you.

$$\boxed{4} \times \boxed{5\text{¢}} = \boxed{20\text{¢}}$$

$$\boxed{\quad} \times \boxed{\quad} = \boxed{\quad}$$

$$\boxed{\quad} \times \boxed{\quad} = \boxed{\quad}$$

Q28) Times tables are a set of multiplication facts from 1 to 10 based on multiplying by the same number each time. Write the answers for the 5 times table.

$$1 \times 5 = \boxed{\quad}$$

$$2 \times 5 = \boxed{\quad}$$

$$3 \times 5 = \boxed{\quad}$$

$$4 \times 5 = \boxed{\quad}$$

$$5 \times 5 = \boxed{\quad}$$

$$6 \times 5 = \boxed{\quad}$$

$$7 \times 5 = \boxed{\quad}$$

$$8 \times 5 = \boxed{\quad}$$

$$9 \times 5 = \boxed{\quad}$$

$$10 \times 5 = \boxed{\quad}$$

Now answer the mixed up 5 times table.

$$\mathbf{a} \quad 2 \times 5 = \boxed{\quad}$$

$$\mathbf{b} \quad 8 \times 5 = \boxed{\quad}$$

$$\mathbf{c} \quad 9 \times 5 = \boxed{\quad}$$

$$\mathbf{d} \quad 10 \times 5 = \boxed{\quad}$$

$$\mathbf{e} \quad 3 \times 5 = \boxed{\quad}$$

$$\mathbf{f} \quad 6 \times 5 = \boxed{\quad}$$

$$\mathbf{g} \quad 7 \times 5 = \boxed{\quad}$$

$$\mathbf{h} \quad 5 \times 5 = \boxed{\quad}$$

$$\mathbf{i} \quad 1 \times 5 = \boxed{\quad}$$

$$\mathbf{j} \quad 4 \times 5 = \boxed{\quad}$$

Write the missing number in each 5 times table fact.

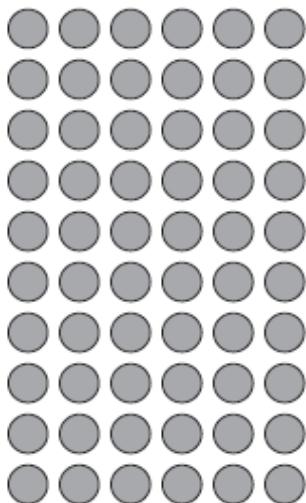
$$\mathbf{a} \quad \boxed{\quad} \times 5 = 35$$

$$\mathbf{b} \quad \boxed{\quad} \times 5 = 20$$

$$\mathbf{c} \quad \boxed{\quad} \times 5 = 50$$

$$\mathbf{d} \quad \boxed{\quad} \times 5 = 15$$

$$\mathbf{e} \quad \boxed{\quad} \times 5 = 40$$


$$\mathbf{f} \quad \boxed{\quad} \times 5 = 10$$

$$\mathbf{g} \quad \boxed{\quad} \times 5 = 30$$

$$\mathbf{h} \quad \boxed{\quad} \times 5 = 45$$

Practice your 6 times table. Did you know that we can use $\times 6$ for short?
So $\times 6$ just means 6 times table, just as $\times 3$ means 3 times table.

Q29) Use this array to complete the 6 times table:

$$\begin{array}{l} 1 \times 6 = \boxed{} \\ 2 \times 6 = \boxed{} \\ 3 \times 6 = \boxed{} \\ 4 \times 6 = \boxed{} \\ 5 \times 6 = \boxed{} \\ 6 \times 6 = \boxed{} \\ 7 \times 6 = \boxed{} \\ 8 \times 6 = \boxed{} \\ 9 \times 6 = \boxed{} \\ 10 \times 6 = \boxed{} \end{array}$$

Fill in the missing numbers:

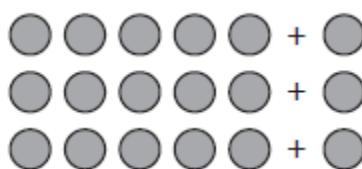
$$\begin{array}{l} \text{a } \boxed{} \times 6 = 54 \\ \text{b } \boxed{} \times 6 = 36 \\ \text{c } \boxed{} \times 6 = 18 \\ \text{d } \boxed{} \times 6 = 24 \\ \text{e } \boxed{} \times 6 = 60 \\ \text{f } \boxed{} \times 6 = 12 \\ \text{g } \boxed{} \times 6 = 48 \end{array}$$

Q30) Complete this table by recalling the 3 times table. Then complete the 6 times table. Can you see how the 3 times table helps with the 6?

	3	8	2	5	9	10	6
$\times 3$							
$\times 6$							

Q31) Solve these problems.

a I saved \$7 every week over 6 weeks.
How much did I save in total?

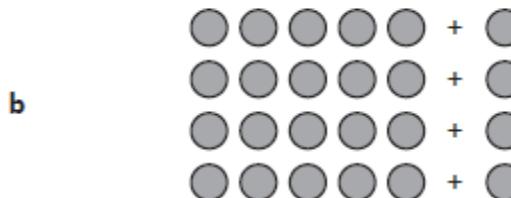

$$\boxed{} \times \boxed{} = \boxed{}$$

b 8 pencil cases had 3 blue pens in each.
How many blue pens are there in total?

$$\boxed{} \times \boxed{} = \boxed{}$$

c 9 classes each baked 6 cakes for the school fundraiser. How many cakes were baked in total?

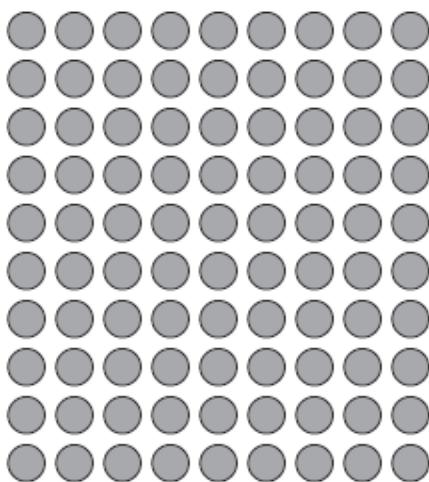
$$\boxed{} \times \boxed{} = \boxed{}$$


You know more times tables facts than you realize.
 For example, knowing your $\times 5$ can help with your $\times 6$.
 The array shows 3 rows of 5. If we add another dot to each row we can change 3 rows of 5 to 3 rows of 6.
 This is called building up.

$$3 \times 5 = 15 + 3 \longrightarrow 3 \times 6 = 18$$

Q32) Change these $\times 5$ arrays into $\times 6$ arrays.

$$2 \times 5 = \boxed{} + \boxed{} \longrightarrow 2 \times 6 = \boxed{}$$


$$4 \times 5 = \boxed{} + \boxed{} \longrightarrow 4 \times 6 = \boxed{}$$

Q33) Complete this table to show how to change a $\times 5$ array to a $\times 6$ array by building up.
 The first one has been done for you.

	$\times 5$	Build up by	$\times 6$
a	$3 \times 5 = 15$	3	$3 \times 6 = 18$
b	$2 \times 5 = 10$		
c	$7 \times 5 = 35$		
d	$4 \times 5 = 20$		
e	$6 \times 5 = 30$		
f	$9 \times 5 = 45$		

Practice your 9 times table.

Q34) Use this array to complete the 9 times table:

$1 \times 9 = \boxed{}$

$2 \times 9 = \boxed{}$

$3 \times 9 = \boxed{}$

$4 \times 9 = \boxed{}$

$5 \times 9 = \boxed{}$

$6 \times 9 = \boxed{}$

$7 \times 9 = \boxed{}$

$8 \times 9 = \boxed{}$

$9 \times 9 = \boxed{}$

$10 \times 9 = \boxed{}$

Q35) Complete these $\times 9$ facts. Look out for turnarounds.

a $3 \times 9 = \boxed{}$

b $9 \times 4 = \boxed{}$

c $6 \times 9 = \boxed{}$

d $2 \times 9 = \boxed{}$

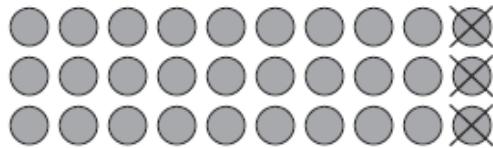
e $9 \times 5 = \boxed{}$

f $1 \times 9 = \boxed{}$

Q36) Find the cost of these items:

a 6 fruit salads =

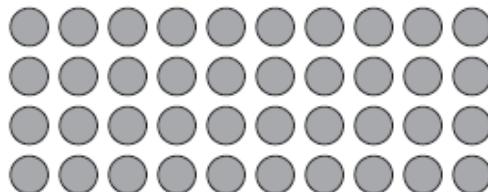
b 4 banana splits =


c 3 mango juices =

d 5 fruit salads =

e 3 banana splits =

f 7 mango juices =



$$3 \times 9 = \boxed{?}$$

If you get stuck on a $\times 9$, remember the $\times 10$ fact and build down.

$$3 \times 10 = 30 - 3 \longrightarrow 3 \times 9 = 27$$

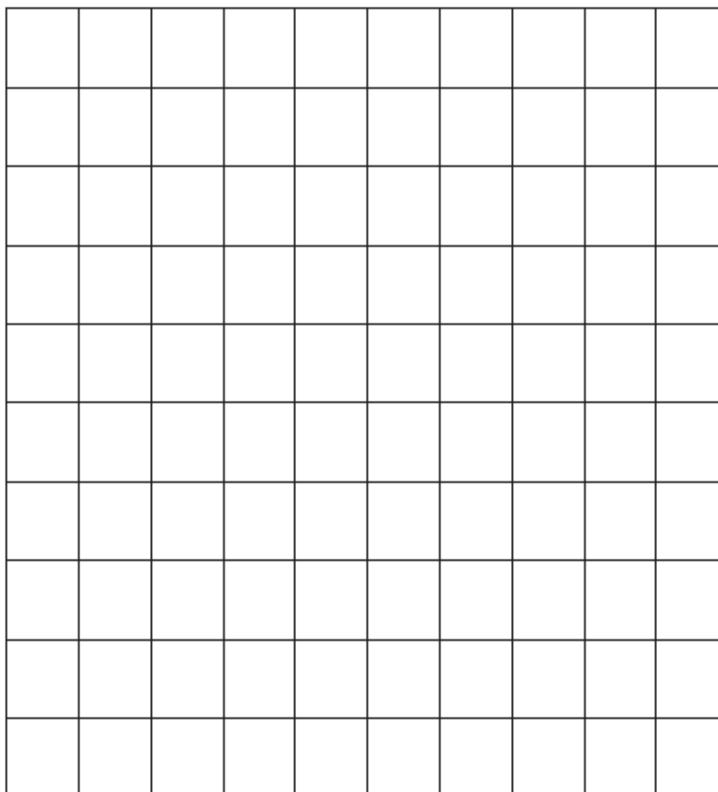
Q37) Change this $\times 10$ array into a $\times 9$ array:

$$4 \times 10 = \boxed{ } - 4 \longrightarrow 4 \times 9 = \boxed{ }$$

Q38) Complete this table to show how to change a $\times 10$ array to a $\times 9$ array by taking 1 from each row.

$\times 10$	Build down by	$\times 9$
$3 \times 10 = 30$	3	$3 \times 9 = 27$
$5 \times 10 = 50$		
$9 \times 10 = 90$		
$6 \times 10 = 60$		
$4 \times 10 = 40$		
$2 \times 10 = 20$		
$8 \times 10 = 80$		
$7 \times 10 = 70$		

When we multiply we make number patterns. Look at this grid.


→ This is 1 row of 10. We have colored 10 squares.

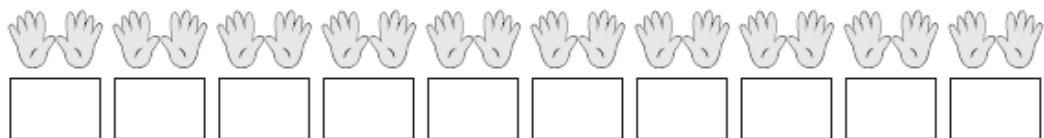
$$1 \times 10 = 10$$

→ Now we have colored 2 rows of 10. This is 20 squares.

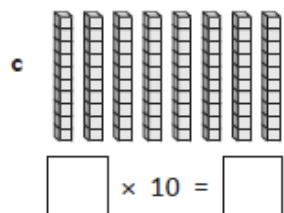
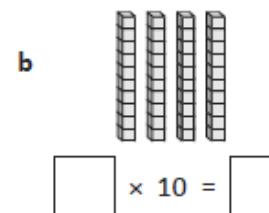
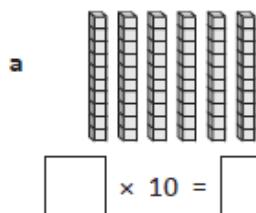
$$2 \times 10 = 20$$

Q39) a Color each row a different color and finish the facts.

1	×	10	=	
2	×	10	=	
	×	10	=	
	×		=	
	×		=	
	×		=	
	×		=	
	×		=	
	×		=	
	×		=	


b Write the answers from question 1a in the boxes below.

10	20								
----	----	--	--	--	--	--	--	--	--




c What do you notice?

If you can skip count in 10s, you know your 10 times table.

Q40) Complete this sequence by counting in 10s:

Q41) Count the longs and then complete the multiplication fact:

Q42) Complete the 10 times table:

$1 \times 10 =$

$2 \times 10 =$

$3 \times 10 =$

$4 \times 10 =$

$5 \times 10 =$

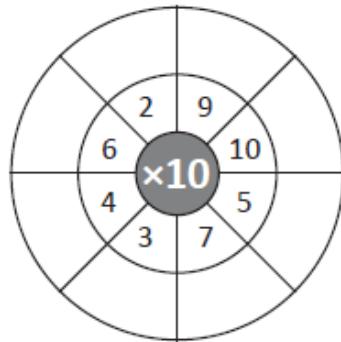
$6 \times 10 =$

$7 \times 10 =$

$8 \times 10 =$

$9 \times 10 =$

$10 \times 10 =$


Write the missing number in each 10 times table fact:

a $\times 10 = 50$

b $\times 10 = 80$

c $\times 10 = 70$

Complete this $\times 10$ wheel:

When we multiply any number by 10, a zero goes in the ones column and the digits all move one space along to the left.

Hundreds	Tens	Ones
		2
	2	0

$$2 \times 10 = 20$$

Q43) Show how the digits all move along when they are multiplied by 10 and write the answers below:

a

Hundreds	Tens	Ones
		7
	7	0

$$7 \times 10 = \boxed{}$$

b

Hundreds	Tens	Ones
		3
		3

$$3 \times 10 = \boxed{}$$

c

Hundreds	Tens	Ones
	1	5
1	5	0

$$15 \times 10 = \boxed{}$$

d

Hundreds	Tens	Ones
	2	2
2	2	0

$$22 \times 10 = \boxed{}$$

Q44) Connect these $\times 10$ facts to the answers:

$$16 \times 10$$

$$62 \times 10$$

$$93 \times 10$$

$$99 \times 10$$

$$13 \times 10$$

220

510

930

990

850

160

130

620

720

980

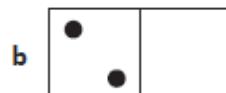
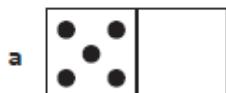
$$72 \times 10$$

$$51 \times 10$$

$$85 \times 10$$

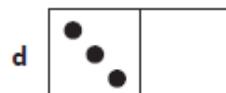
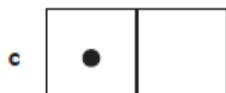
$$22 \times 10$$

$$98 \times 10$$



When we double, we are multiplying by 2.

Here is 1 spider. One spider has 8 legs $1 \times 8 = 8$

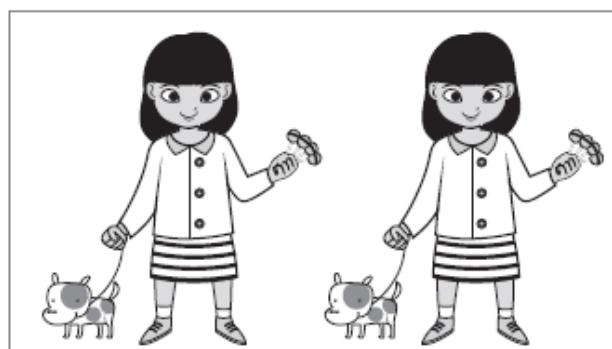
If we double it, we have 2 spiders.



How many legs do they have? $8 + 8 = 16$

Q45) Draw dots on the other side of the dominoes to create doubles. Finish the number facts.

$$2 \times 5 = 10$$

$$2 \times 2 = \square$$


$$\square \times \square = \square$$

$$\square \times \square = \square$$

Q46) Look at the twins. Write the multiplication facts to match.

a How many ?

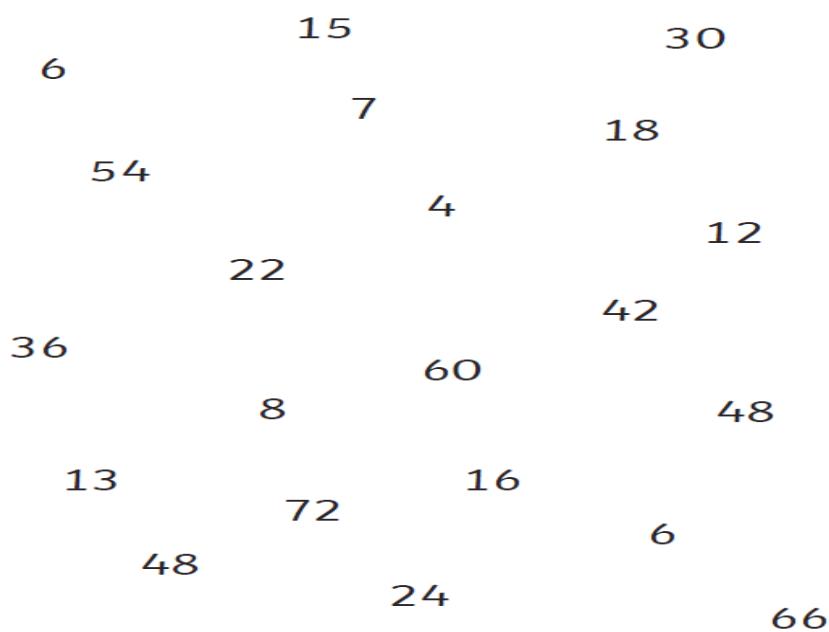
$$\square \times \square = \square$$

b How many ?

$$\square \times \square = \square$$

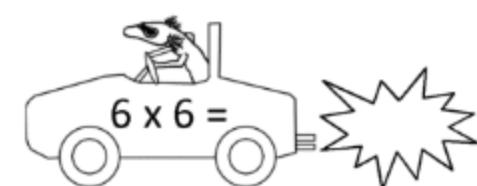
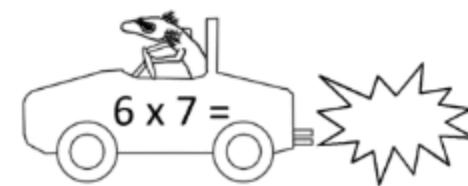
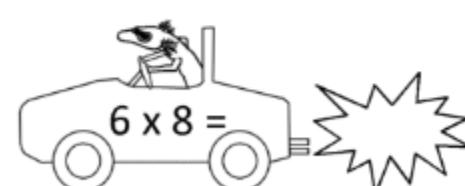
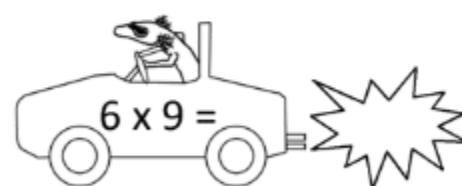
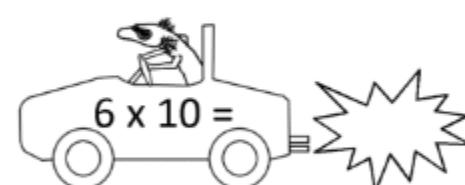
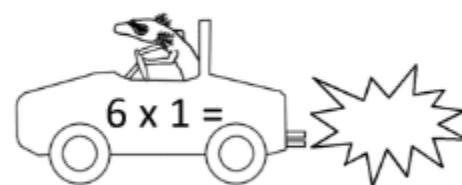
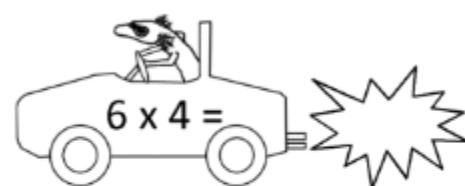
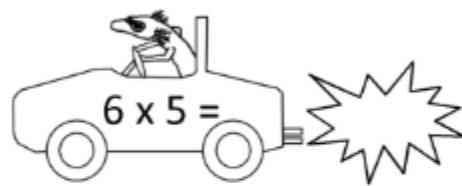
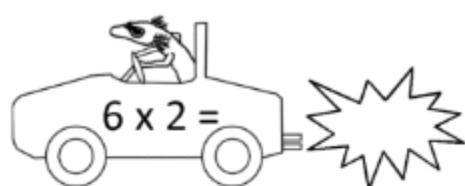
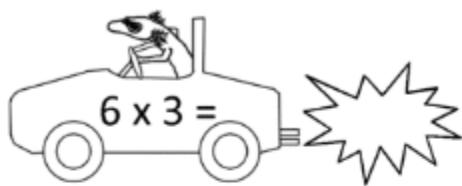
c How many ?

$$\square \times \square = \square$$


d How many ?

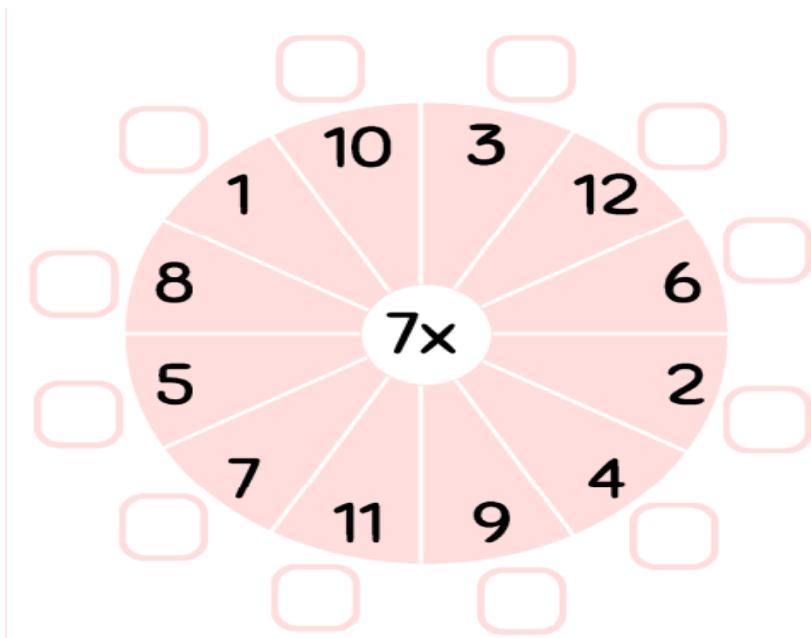
$$\square \times \square = \square$$

Q47) Complete the missing number calculations.











$$\begin{array}{rcl} 6 \times \boxed{} & = & 0 \\ 6 \times \boxed{} & = & 6 \\ 6 \times \boxed{} & = & 12 \\ 6 \times \boxed{} & = & 18 \\ 6 \times \boxed{} & = & 24 \\ 6 \times \boxed{} & = & 30 \\ 6 \times \boxed{} & = & 36 \\ 6 \times \boxed{} & = & 42 \\ 6 \times \boxed{} & = & 48 \\ 6 \times \boxed{} & = & 54 \\ 6 \times \boxed{} & = & 60 \\ 6 \times \boxed{} & = & 66 \\ 6 \times \boxed{} & = & 72 \end{array}$$

Q48) Find the products of the 6 times table. Circle the products.

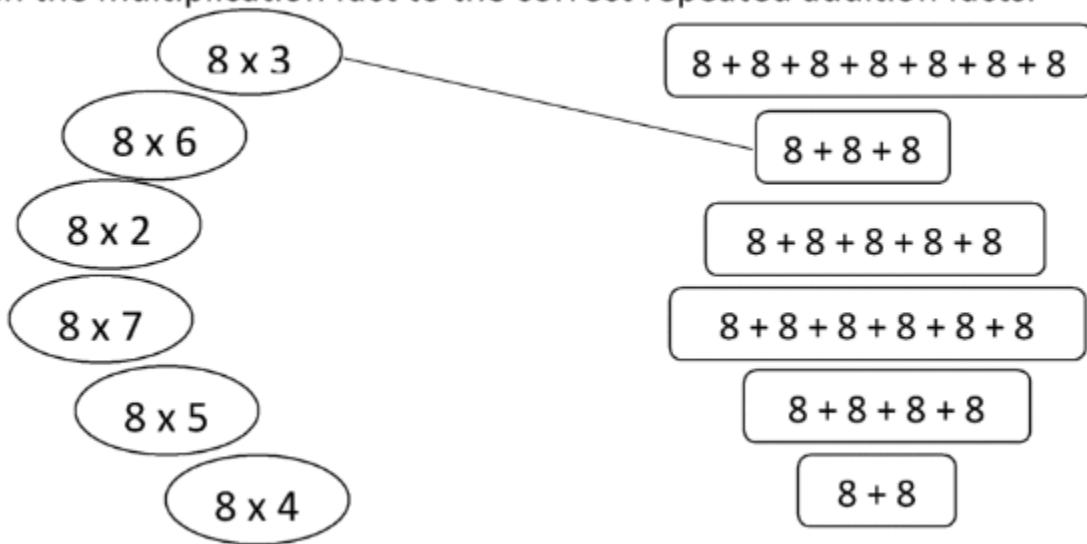
Q49) Write the answers to these multiplication facts in the smoke clouds.


Shade the smoke clouds between 20 and 40 orange.

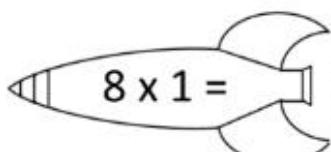
Q50) Complete the 7 times table.

$1 \times 7 =$ <input type="text"/>	$7 \times 7 =$ <input type="text"/>
$2 \times 7 =$ <input type="text"/>	$8 \times 7 =$ <input type="text"/>
$3 \times 7 =$ <input type="text"/>	$9 \times 7 =$ <input type="text"/>
$4 \times 7 =$ <input type="text"/>	$10 \times 7 =$ <input type="text"/>
$5 \times 7 =$ <input type="text"/>	$11 \times 7 =$ <input type="text"/>
$6 \times 7 =$ <input type="text"/>	$12 \times 7 =$ <input type="text"/>

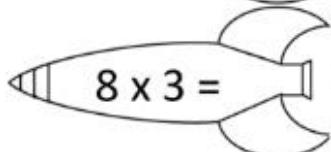
Q51)



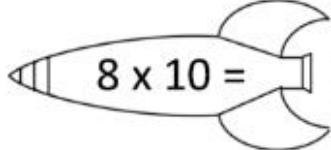
Q52) Help Newton to find his way out of the maze by shading the path counting in 8s up to 80.


IN	8	15	56	64	72	
	16	21	48	55	80	OUT
	24	32	40	62	73	
	30	42	46	58	70	
	38	44	52	56	62	

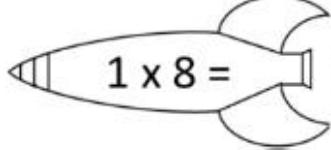
Q53) Match the multiplication fact to the correct repeated addition facts.



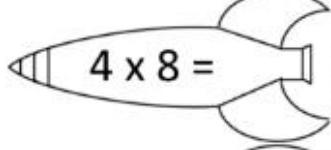
Q54)


Write the answers inside the rocket smoke.

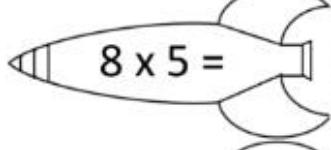
$8 \times 1 =$



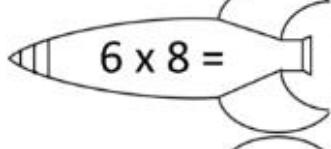
$8 \times 3 =$


$8 \times 7 =$

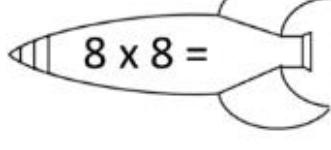
$8 \times 10 =$


$9 \times 8 =$

$1 \times 8 =$


$0 \times 8 =$

$4 \times 8 =$


$8 \times 4 =$

$8 \times 5 =$

$3 \times 8 =$

$6 \times 8 =$

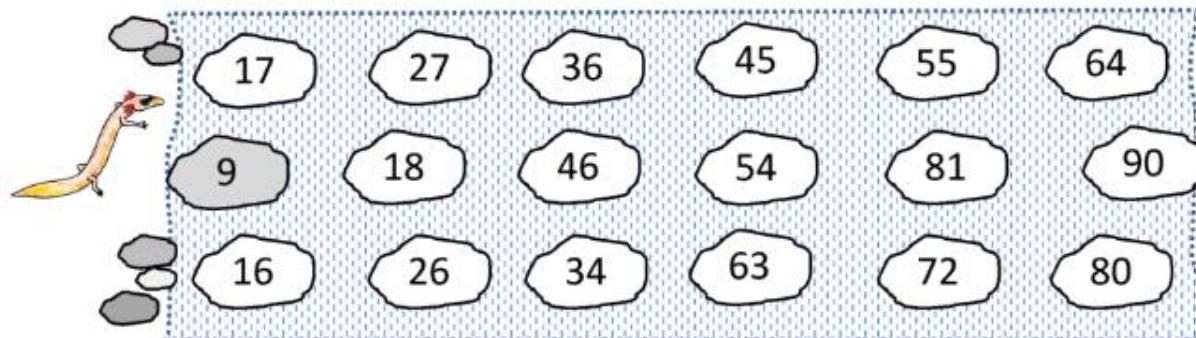
$8 \times 6 =$

$8 \times 8 =$

$7 \times 8 =$

$8 \times 9 =$

Q55) Fill in the missing numbers in the 9 times table.


$9 \times 1 =$ 9 $9 \times 2 =$ 18 $9 \times 3 =$ 27 $9 \times 4 =$ 36 $9 \times 5 =$ 45

$9 \times 6 =$ 54 $9 \times 7 =$ 63 $9 \times 8 =$ 72 $9 \times 9 =$ 81 $9 \times 10 =$ 90

Q56) Draw lines to match the 9 times table fact to its answer.

9×3	63	9×5	9
9×7	36	9×2	45
9×4	27	9×8	81
9×10	54	9×1	72
9×6	90	9×9	18

Q57) Help Captain Salamander to cross the river by shading the stepping stones counting up in 9s.

The End