

Name: _____

Date: / / 2026

Subject: Past papers booklet paper 2

Grade 5 (A, B)

In this booklet you are allowed to use a calculator.

Q1)

Write the numbers in order of size, starting with the smallest.

4.36 4.70 4.03 4.63 4.07

.....
smallest

.....
largest

[1]

Q2)

Here is a table showing the position and the terms of a sequence.

Complete the table.

Position	Term
1	7
2	14
3	21
10
15
.....	350

[2]

Q3)

Add together the 3rd square number and the 5th square number.

[1]

Q4)

Write the correct number in each box to complete the calculation.

$$46 \times 34 = 46 \times \boxed{} + \boxed{} \times 4$$

[1]

Q5)

Write a two-digit number ending in 7 that is a prime number.

.....

Write a two-digit number ending in 7 that is not a prime number.

.....

[1]

Q6)

Tick (✓) all the statements that are equivalent to 42.573

42 ones and 573 thousandths

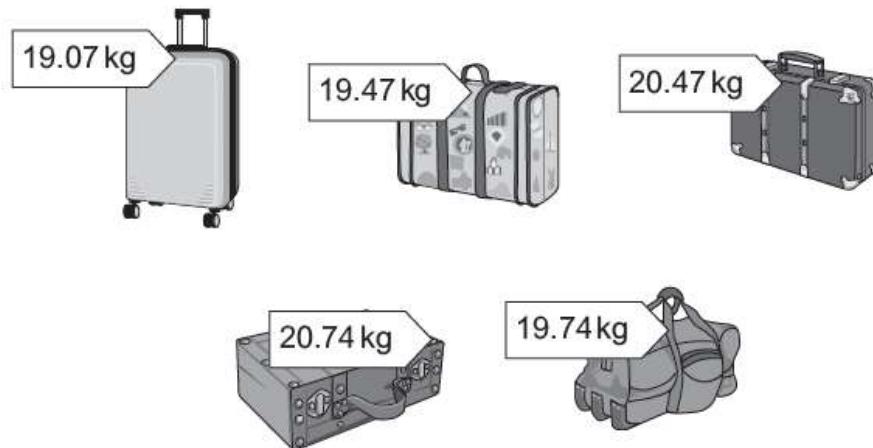
425 tenths and 73 hundredths

4 tens, 2 ones, 57 hundredths and 3 thousandths

42 ones, 57 tenths and 3 thousandths

4 tens, 2 ones, 5 tenths, 7 hundredths and 3 thousandths

[2]


Q7)

Write two common multiples of 12 and 30

..... [1]

Q8)

Here are some suitcases.

The mass of each suitcase is shown on the label.

Oliver rounds each mass to the nearest kilogram.

Draw a ring around each suitcase with a mass that rounds to 20 kilograms. [1]

Q9)

A number line is marked in steps of constant size.

Write the correct number in each box.

[1]

Q10)

Write a number in the box to make this statement correct.

$$\frac{\boxed{}}{100} = 0.25$$

[1]

Q11) Here are the first four terms of a sequence.
The sequence continues in the same way.

1

4

9

16

Write the 8th term of this sequence.

[1]

Q12) Insert **one** pair of brackets to make the calculation correct.

$$25 + 5 \times 2 = 60$$

[1]

Q13) Write a number in the box to make the statement correct.

$$4 \boxed{} = 64$$

Q14) Draw a ring around **each** number that rounds to 5.0 when rounded to the nearest tenth.

4.45

5.50

5.01

5.11

4.95

4.55

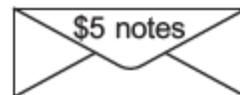
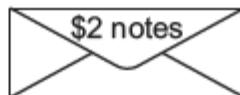
[1]

Q15) Draw lines to match the values with the correct digit in the number 5555.555

5 hundredths

5 tens

5 ones



5 thousandths

5	5	5	5	.	5	5	5
---	---	---	---	---	---	---	---

[1]

Q16)

Eva has some \$2 notes and some \$5 notes.
She keeps them in two separate envelopes.

A represents the **total amount** in the envelope that contains the \$2 notes.
B represents the **total amount** in the envelope that contains the \$5 notes.

$$A + B = \$25$$

Write a possible pair of values for A and B.

$$A = \$ \dots$$

$$B = \$ \dots$$

[1]

Q17)

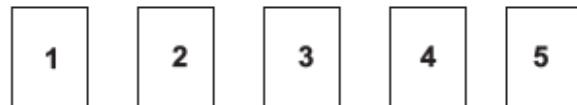
Here are two shapes.

Each shape represents a whole number between 1 and 10

Yuri writes this statement.

$$\triangle + \triangle + \triangle + \bigcirc = 27$$

Write a value for each shape so that Yuri's statement is correct.


$$\triangle = \dots$$

$$\bigcirc = \dots$$

[1]

Q18)

Here are five number cards.

Use **three** of the number cards to make this calculation correct.
Each card can only be used once.

$$\square + \square \times \square = 16$$

[1]

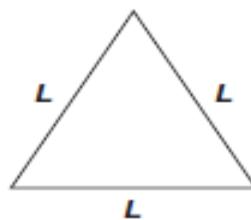
Q19)

Draw a ring around the number which is the same as 3 tens and 67 thousandths.

3.0067

3.067

30.0067


30.067

30.67

[1]

Q20)

Here is a triangle with side length L cm.

The perimeter, P cm, can be written as

$$P = L + L + L$$

(a) Calculate the value of P when L is 12 cm.

$$P = \text{.....} \text{ cm} \quad [1]$$

(b) Calculate the value of L when P is 21 cm.

$$L = \text{.....} \text{ cm} \quad [1]$$

Q21)

(a) Here are three symbols.

Write down the correct symbols to make the statement true.

$$5 \quad \square \quad (4 \quad \square \quad 3 \quad \square \quad 2) = 50$$

[1]

(b) Insert one pair of brackets to make the calculation correct.

$$7 + 5 \times 1 + 3 - 4 = 23$$

[1]

Q22)

Pierre thinks of a square number.

He multiplies the square number by 4

He gets a cube number.

Write down the square number.

[1]

Q23)

(a) Write a common multiple of 12 and 18

[1]

(b) Write a common factor of 12 and 18

[1]

Q24)

Here is part of a sequence.

23, 17, 11, ...

The sequence continues in the same way.

Draw a ring around all the numbers that are in the sequence.

7

-2

-7

-35

-49

[1]

Q25)

Draw a line to match each number to the correct description.

136 tenths

1064 hundredths

Greater than 13.56

125 tenths and 42 hundredths

1 ten and 75 tenths

Less than 13.56

1 ten, 40 tenths and 36 hundredths

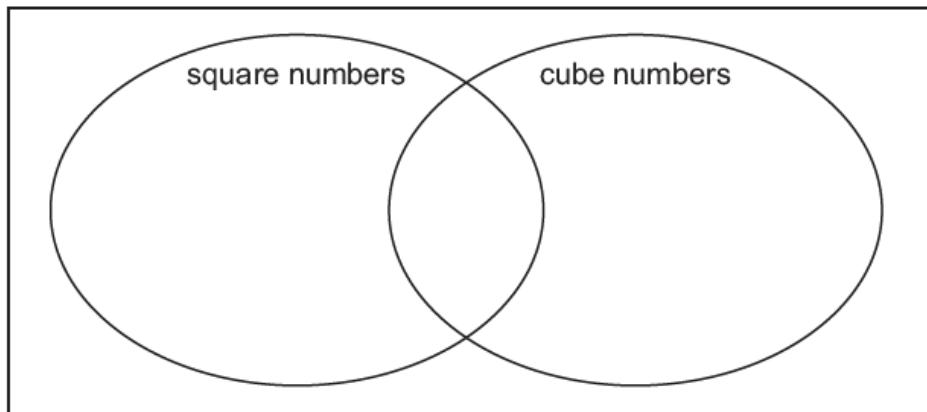
[2]

Q26)

Here are some numbers.

1

5


8

16

25

64

Write each of these numbers in the correct place on the Venn diagram.

[2]

Q27)

Naomi and Angelique each think of a number with exactly 1 decimal place.
Both numbers round to the same whole number.

Write the largest possible **difference** between the two numbers.

.....
[1]

Q28)

Yuri calculates $6 + 4 \times 2$

Yuri says,

Yuri is **not** correct.

He has used an incorrect method.

Explain the correct method.

.....
[1]

Q29)

The temperature in Oslo is -4°C .
The temperature in Harbin is -14°C .

(a) Write the difference in temperature between Oslo and Harbin.

..... $^{\circ}\text{C}$ [1]

(b) The temperature in Helsinki is halfway between the temperatures in Oslo and Harbin.

Write the temperature in Helsinki.

..... $^{\circ}\text{C}$ [1]

Q30)

Here is part of a number sequence.

The sequence continues in the same way.

<input type="text"/>	4	3.25	2.5	<input type="text"/>
----------------------	---	------	-----	----------------------

Write the correct numbers in the boxes to complete the sequence.

[1]

Q31)

(a) Write the **largest** number that is a factor of both 36 and 48

[1]

(b) Write the **smallest** number that is a multiple of both 36 and 48

[1]

Q32)

Tick (✓) all the expressions that are equivalent to 13.024

13 ones + 24 thousandths	
13 ones + 2 tenths + 4 thousandths	
10 + 3 + 0.02 + 0.004	

[1]

Q33)

Pierre has some \$1 notes **and** some \$2 notes.

The total value of the notes is \$50

g represents the number of \$1 notes Pierre has.

h represents the number of \$2 notes Pierre has.

(a) Write the value of **g** when **h** is 10

..... [1]

(b) Write the largest possible value of **h**.

..... [1]

Good Luck