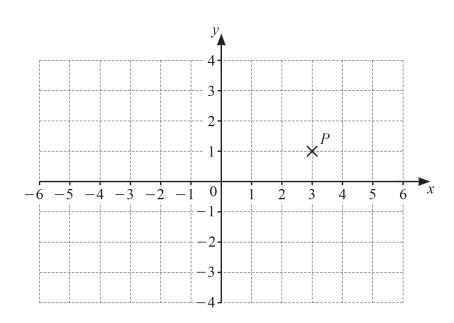
$$\mathbf{1} \qquad \mathbf{a} = \begin{pmatrix} -3 \\ 5 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 7 \\ -4 \end{pmatrix}$$

Work out.


(a) 4a

(b) 2a - b

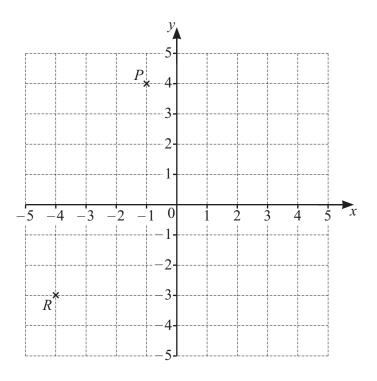
 $\left(\quad \right) \quad _{[2]}$

[Total: 3]

2

(a) Write down the coordinates of point P.

(.....) [1]


(b) On the grid, plot point Q at (-4, 2). [1]

(c)
$$\overrightarrow{PR} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

On the grid, plot point R. [1]

(d) On the grid, draw the line y = 3. [1]

3 The grid shows point P and point R.

(a) Write down the coordinates of point P.

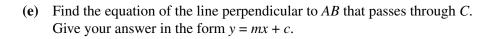
(...... ,) [1]

$$\overrightarrow{PQ} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

Mark point Q on the grid. [1]

(c) Find \overrightarrow{QR} .

$$\overrightarrow{QR} = \begin{pmatrix} & \\ & \end{pmatrix}$$
 [1]


(d) Complete this statement.

$$\overrightarrow{PQ} + \overrightarrow{QR} = \cdots$$

[1]

[Total: 4]

A h	A has coordinates $(-2, 7)$, B has coordinates $(1, -5)$ and C has coordinates $(5, 4)$.					
(a)	Find the coordinates of the midpoint of the line <i>AB</i> .					
(b)	Find \overrightarrow{AC} .	()	[2]			
(c)	Find $ \overrightarrow{AC} $.	$\overrightarrow{AC} = \begin{pmatrix} \\ \end{pmatrix}$	[2]			
(d)	Find the equation of the line AB . Give your answer in the form $y = mx + c$.		[2]			
		<i>y</i> =	[3]			

$$y =$$
 [3]

[Total: 12]

5 Work out.

$$3\begin{pmatrix} -4\\7\end{pmatrix}$$

$$\left(\begin{array}{c} \\ \end{array}\right)$$

[Total: 1]

$$\mathbf{6} \qquad \mathbf{a} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$

Work out.

(a) 8b

 $\begin{pmatrix} & \end{pmatrix} & \begin{bmatrix} 1 \end{bmatrix}$

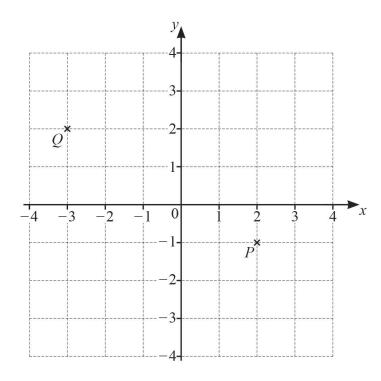
(b) a-b

 $\begin{pmatrix} & \end{pmatrix} & \begin{bmatrix} 1 \end{bmatrix}$

7	Point <i>L</i> has coordinates $(-3, 6)$ and $\overrightarrow{LM} =$	(; 	5 \ 2 \)
---	--	---------	------------	---

Find the coordinates of point M.

(.....) [1]

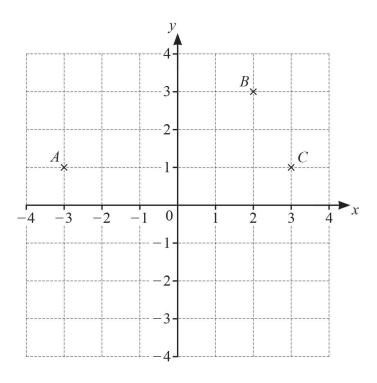

[Total: 1]

8 Work out.

(a)
$$2\begin{pmatrix} -3\\7 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 8 \\ -6 \end{pmatrix} + \begin{pmatrix} -5 \\ 2 \end{pmatrix}$$

 $\left(\quad \right) \quad _{[1]}$



(a) Write \overrightarrow{PQ} as a column vector.

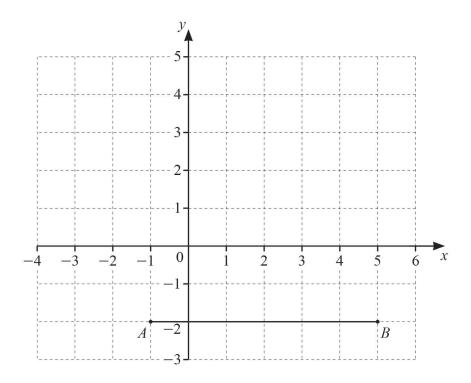
 $\begin{pmatrix} & & \\ & & \end{pmatrix}$ [1]

(b) Write $3\overrightarrow{PQ}$ as a single vector.

 $\left(\quad \right) \quad _{[1]}$

Points A, B and C are shown on the grid.

(a) Write down the coordinates of point C.


	(`	Г 1	1 -
(_)		
	(,	 ,	L	٠.

(b) On the grid, plot point D so that ABCD is a parallelogram. [1]

(c) On the grid, plot point
$$E$$
 so that $\overrightarrow{EA} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$. [2]

[Total: 4]

11 The diagram shows a line AB on a 1 cm² grid.

(a) Write down the coordinates of point A.

1				`\	Γ11
(•••••	,	•••••	,	ĹΙJ

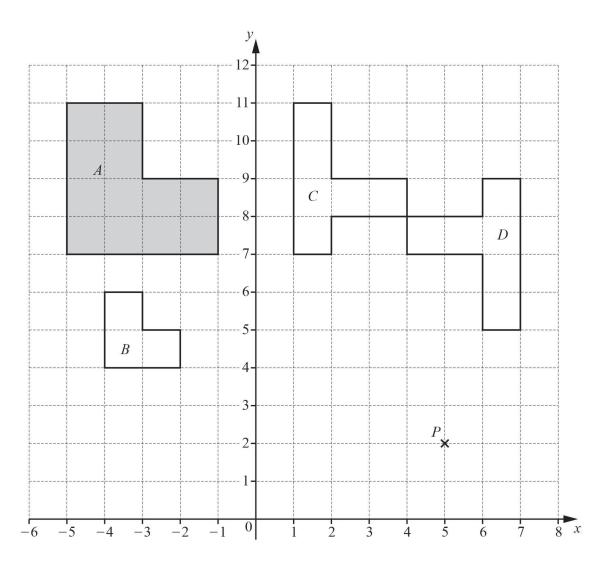
(b) Write down the vector \overrightarrow{AB} .

$$\left(\quad \right) \quad _{[1]}$$

(c)
$$\overrightarrow{BC} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$$

Mark point *C* on the grid. [1]

(d) (i) Work out $\overrightarrow{AB} + \overrightarrow{BC}$.



(ii) Complete this statement.

$$\overrightarrow{AB} + \overrightarrow{BC} = \cdots$$

	(e) A, B a	and C are three vertices of a parallelogram, $ABCD$.	
	(i)	Mark point D on the diagram and draw the parallelogra	$\operatorname{mm} ABCD. $ [1]
	(ii)	Work out the area of the parallelogram. Give the units of your answer.	
			[2]
			[Total: 8]
12	$\mathbf{p} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$	$\mathbf{q} = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$	
	(a) Find 2	$2\mathbf{p} + \mathbf{q}$.	
			() [2]
			() [2]
	(b) Find	p .	
			[2]
			[Total: 4]
13	A is the poi	int (4, 1) and $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$.	
	Find the co	pordinates of B .	
			() [1]
			[Total: 1]

14 The diagram shows four shapes A, B, C and D and a point P on a 1 cm² grid.

(a)	Find	

(i) the perimeter of shape A,

(ii) the area of shape A.

 cm^2	[1]

(b) (i) Write down the co-ordinates of point P.

(`	F17
)	111

(ii)	Fin	d the co-ordinates of the image of point <i>P</i>	when	
	A	P is reflected in the y-axis,		
			() [[1]

P is reflected in the line y = 6.

			(,) [2]
		(iii)	Find the vector that translates point P to the point (49, -12).	()	
					[2]
	(c)	Descri	be fully the single transformation that maps		
		(i)	shape A onto shape B ,		
					[3]
		(ii)	shape C onto shape D .		[5]
					[3]
				[Tot	al: 14]
15	Work	out.			
	(a)	$\begin{pmatrix} -2 \\ 5 \end{pmatrix}$	$-\begin{pmatrix} -1\\1\end{pmatrix}$		
					[1]
	(b)	_ (-3			
		′			
					[1]
				[To	otal: 2]

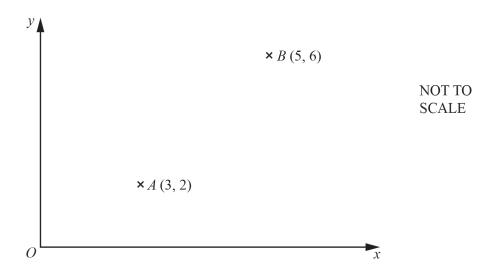
16	a – l	(-3 \) _b _	(5)	$\mathbf{c} = \begin{pmatrix} \mathbf{c} & \mathbf{c} & \mathbf{c} \end{pmatrix}$	14	١
	a =	2 ,) b =	4) e = (9	J

(a) Find 3a - 2b.

 $\begin{pmatrix} & \\ & \end{pmatrix}$ [2]

(b) Find |**a**|.

.....[2]


(c) $m\mathbf{a} + n\mathbf{b} = \mathbf{c}$

Write down two simultaneous equations and solve them to find the value of m and the value of n. Show all your working.

m =

 $n = \dots$ [5]

[Total: 9]

(a) Find the column vector \overrightarrow{AB} .

$\overrightarrow{AB} =$	[1]
	-	_

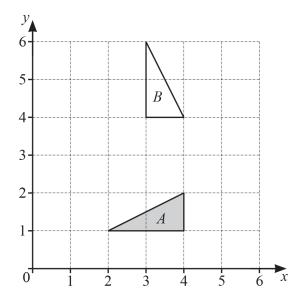
(b) Find \overrightarrow{AB} .

\overrightarrow{AB}	=		[2]
-----------------------	---	--	-----

(c) B is the mid-point of the line AC.

Find the co-ordinates of C.

1				`	[2]
(•••••	,	•••••	,	[4]

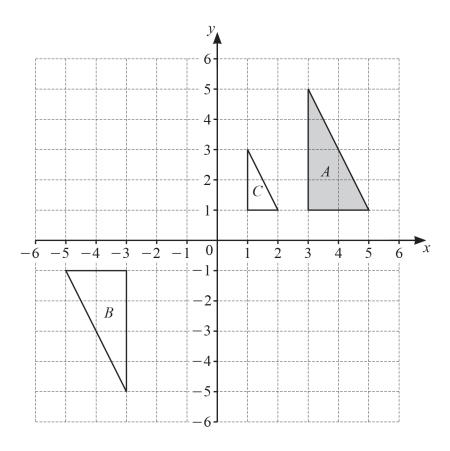

(d) Find the equation of the straight line that passes through A and B.

.....[3]

(e) The straight line that passes through A and B cuts the y-axis at D.

Write down the co-ordinates of D.

(...... ,) [1]


Describe fully the **single** transformation that maps triangle A onto triangle B.

.....

.....[3]

[Total: 3]

19 Triangles A, B and C are shown on the grid.

(a)	Describe fully	the single	transformation	that mans
(a)	Describe fully	me smgie	uansionnauon	mat mads

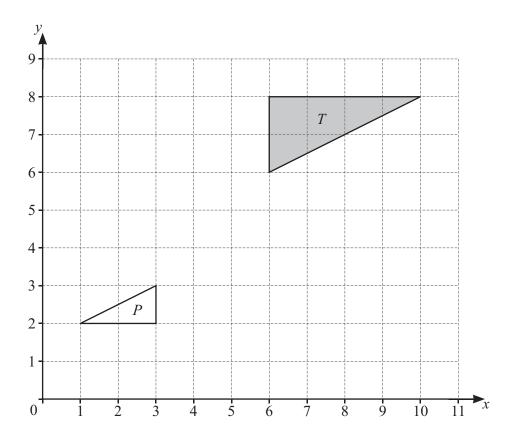
(i) triangle A onto triangle B,

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

(ii) triangle A onto triangle C.

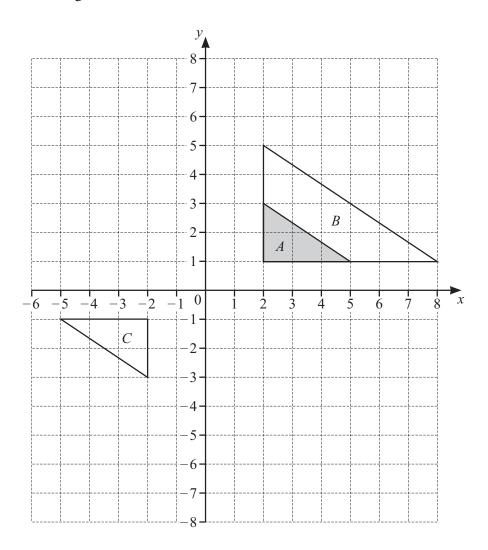
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

(b) On the grid,


(i) reflect triangle A in the line
$$y = 0$$
, [2]

(ii) translate triangle A by the vector
$$\begin{pmatrix} -7\\1 \end{pmatrix}$$
. [2]

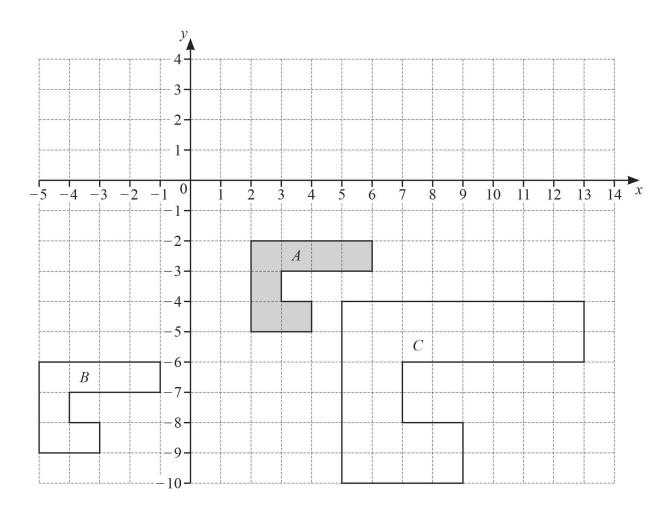
[Total: 10]


[3]

20

Describe fully the **single** transformation that maps triangle T onto triangle P.

21 The grid shows triangles A, B and C.


(a)	Describe fully the single transformation that maps triangle <i>A</i> onto triangle <i>B</i> .	
		[3]
(b)	Describe fully the single transformation that maps triangle A onto triangle C .	
		[3]
(c)	Draw the image of	[3]

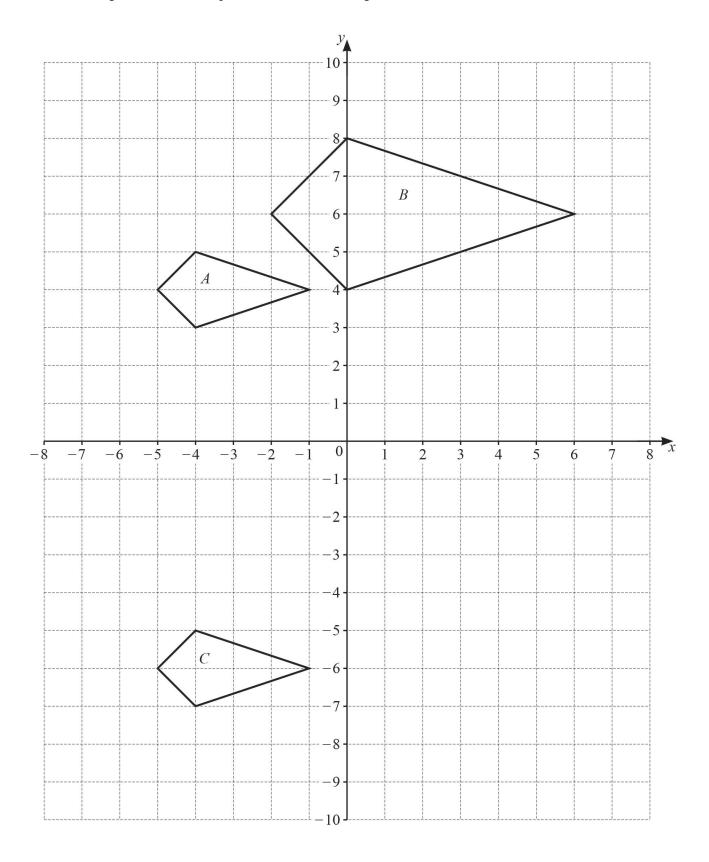
(c) Draw the image of

(i) triangle A after a translation by the vector
$$\begin{pmatrix} -5\\ 3 \end{pmatrix}$$
, [2]

(ii) triangle A after a reflection in the line
$$y = -2$$
. [2]

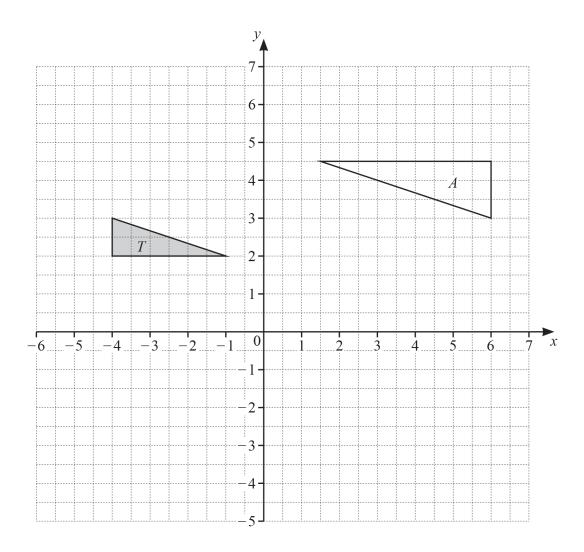
22 The grid shows three shapes, A, B and C.

(a)	Describe	fully the	alanala	transform	nation	that n	ane
(a)	Describe	: IIIIIV IIIE	: Siliyie	transform	панюн	ппан п	Ians

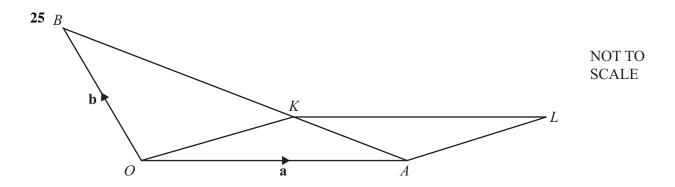

(i)	shape A onto shape B ,	
		[2]
(ii)	shape A onto shape C .	

(b) On the grid, draw the image of shape A after a rotation, 90° clockwise, centre (6, -3). [2]

[Total: 7]


[3]

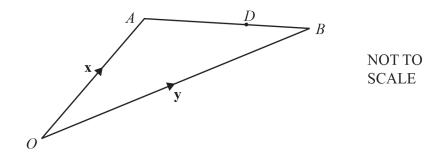
23 The diagram shows three quadrilaterals on a 1 cm² grid.


(a) Write down the mathematical name of quadrilateral A.

			[1]
(b)	Find th	he area of quadrilateral A .	
		cm ²	[1]
(c)	Descri	be fully the single transformation that maps quadrilateral A onto	
	(i)	quadrilateral B,	
			[3]
	(ii)	quadrilateral C.	
			[2]
(d)	On the	grid, draw the image of	
	(i)	quadrilateral C after a 90° anticlockwise rotation about the origin,	[2]
	(ii)	quadrilateral C after a reflection in the line $x = 1$.	[2]
		[Total	: 11]

- (a) Draw the image of triangle T after a reflection in the line y = x. [2]
- (b) Draw the image of triangle T after a translation by the vector $\begin{pmatrix} -1\\3 \end{pmatrix}$. [2]
- (c) Describe fully the **single** transformation that maps triangle *T* onto triangle *A*.

[Total: 7]



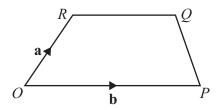
The diagram shows a triangle OAB and a parallelogram OALK. The position vector of A is \mathbf{a} and the position vector of B is \mathbf{b} . K is a point on AB so that AK : KB = 1 : 2.

Find the position vector of L, in terms of \mathbf{a} and \mathbf{b} . Give your answer in its simplest form.

 [4]

[Total: 4]

$$\overrightarrow{OA} = \mathbf{x}, \overrightarrow{OB} = \mathbf{y} \text{ and } \overrightarrow{OD} = \frac{3}{7}\mathbf{x} + \frac{4}{7}\mathbf{y}.$$


Calculate the ratio AD:DB.

 :	 [2]

[Total: 2]

$$\mathbf{p} = \begin{pmatrix} 2 \\ 8 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

Find $|\mathbf{p} - \mathbf{q}|$.

NOT TO SCALE

The diagram shows a trapezium OPQR.

O is the origin, $\overrightarrow{OR} = \mathbf{a}$ and $\overrightarrow{OP} = \mathbf{b}$.

$$\left| \overrightarrow{RQ} \right| = \frac{3}{5} \left| \overrightarrow{OP} \right|$$

(a) Find \overrightarrow{PQ} in terms of **a** and **b** in its simplest form.

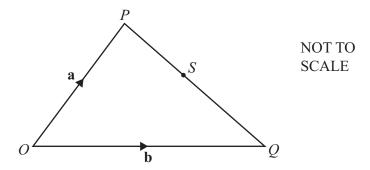
\longrightarrow	
PO =	 [2]
* ×	 [-]

(b) When PQ and OR are extended, they intersect at W.

Find the position vector of W.

.....[2]

[Total: 4]


29 The magnitude of the vector $\begin{pmatrix} 20 \\ k \end{pmatrix}$ is 29.

Find the value of k.

 $k = \dots$ [3]

[Total: 3]

30

S is a point on PQ such that PS: SQ = 4:5.

Find \overrightarrow{OS} , in terms of **a** and **b**, in its simplest form.

$$\overrightarrow{OS} = \dots$$
 [2]