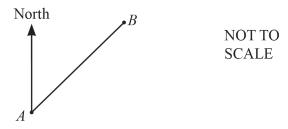

1	The bearing	of A from	Ric	1370
1	The bearing	of A Hom	D 18	131.

Find the bearing of B from A.

[Total: 2]

2 The scale drawing shows the positions of town A and town B. The scale is 1 cm represents 15 km.

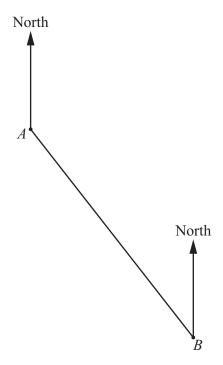


Scale: 1 cm to 15 km

Measure the bearing of town B from town A.

.....[1]

[Total: 1]

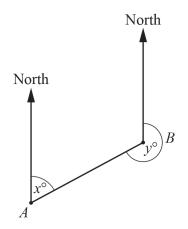

The bearing of *B* from *A* is 059° .

Work out the bearing of A from B.

 [2]

[Total: 2]

4


Measure the bearing of point B from point A.

.....[1]

[Total: 1]

5 The bearing of *B* from *A* is x° . The bearing of *A* from *B* is y° . x: y = 2: 7

Calculate the value of *y*.

NOT TO SCALE

<i>y</i> =		[3]
------------	--	-----

[Total: 3]

6 The bearing of a boat from a harbour is 322° .

Work out the bearing of the harbour from the boat.

.....[2]

[Total: 2]

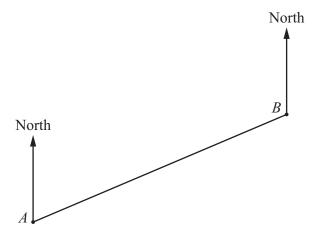
7 The scale drawing shows the positions of two towns, P and Q. The scale is 1 cm represents 4 km.

Searc. I cill to Till	Scal	e: 1	cm	to	4	kn
-----------------------	------	------	----	----	---	----

km	[2]
----	-----

(b) Measure the bearing of town Q from town P.

.....[1]


(c) Town X is 28 km from town P on a bearing of 140° .

On the scale drawing, mark the position of town X.

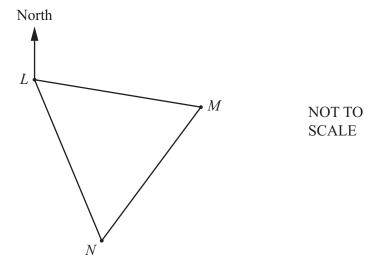
[Total: 5]

[2]

8 The scale drawing shows the positions of house *A* and house *B*. The scale is 1 centimetre represents 12 metres.

Scale:	1 cm to	12 m

(a) Measure the bearing of house A from house B.

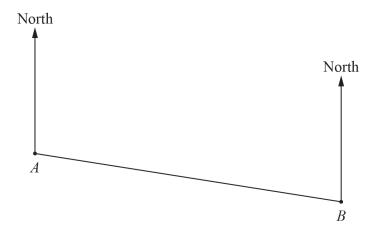

(b) Another house, C, is 102 metres from house B on a bearing of 157°.

On the scale drawing, mark the position of house *C*.

[Total: 4]

[1]

[3]



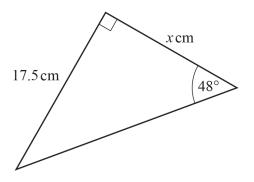
On a map, the positions of the towns L, M and N form an equilateral triangle. The bearing of M from L is 103° .

Work out the bearing of L from N.

 [2]

[Total: 2]

NOT TO SCALE

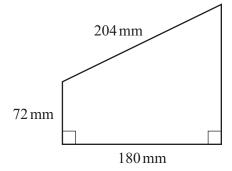

The bearing of *B* from *A* is 105° .

Find the bearing of A from B.

 [2]

[Total: 2]

11

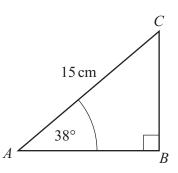

NOT TO SCALE

The diagram shows a right-angled triangle.

Show that the value of x is 15.8, correct to 3 significant figures.

[3]

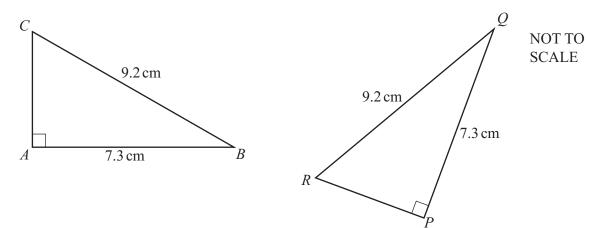
[Total: 3]


NOT TO SCALE

Work out the area of this trapezium.

2	
 mm ²	[5]

[Total: 5]


13

NOT TO SCALE

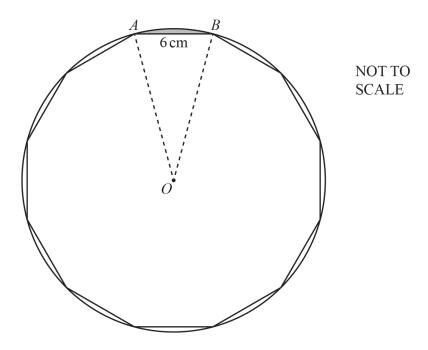
The diagram shows a right-angled triangle, ABC. AC = 15 cm and angle $BAC = 38^{\circ}$.

Calculate BC.

The diagram shows two right-angled triangles, ABC and PQR.

(a) Complete this statement with a geometrical term.

Triangle
$$ABC$$
 is to triangle PQR . [1]

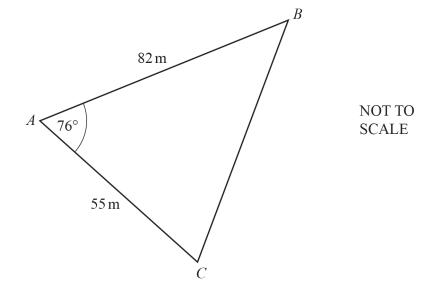

(b) Calculate angle *ABC*.

Angle
$$ABC = \dots$$
 [2]

[Total: 3]

- 15 A regular 12-sided polygon has side length 6 cm.
 - (a) Show that one interior angle of the polygon is 150° .

(b) The polygon is enclosed by a circle, centre O, so that each vertex touches the circumference of the circle.

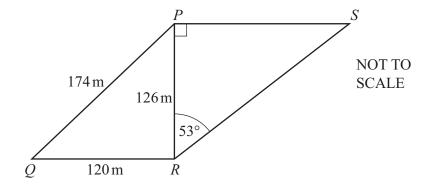


(i) Show that the radius, AO, of the circle is 11.6 cm, correct to 1 decimal place.

(ii)	Calo	culate
	A	the circumference of the circle,

..... cm [2]

	B the perimeter of the shaded minor segment	formed by the chord AB.	
		cm	[2]
(c)	The regular 12-sided polygon is the cross-section of a pri	sm of length 2 cm.	
	Calculate the volume of the prism.		
		cm ³	[3]
			[3]
		[Total:	· 111
		[Total	


The diagram shows a field ABC.

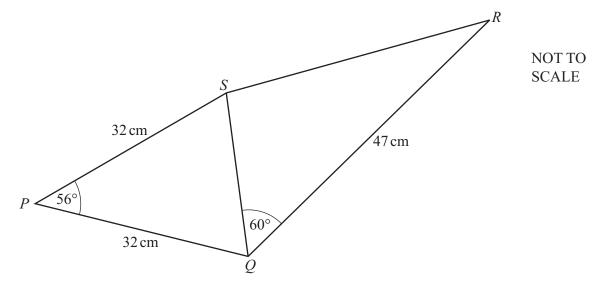
(a) Calculate BC.

$$BC =$$
 m [3]

(b) Calculate angle *ACB*.

A gate, G , lies on AB at the shortest distance from C .
Calculate AG.
$AG = \dots m [3]$
A different triangular field PQR has the same area as ABC .
PQ = 90 m and $QR = 60 m$.
Work out the two possible values of angle <i>PQR</i> .
Angle $PQR =$ or
[Total: 14]
[10tal. 14]

The diagram shows Tarak's two triangular fields, PQR and PRS. Angle $RPS = 90^{\circ}$ and angle $PRS = 53^{\circ}$. PQ = 174 m, QR = 120 m and PR = 126 m.


(a) Show that angle $PRQ = 90^{\circ}$.

[2]

(b) Calculate the area of the quadrilateral *PQRS*. Give your answer correct to 4 significant figures.

..... m² [5]

[Total: 7]

The diagram shows a quadrilateral PQRS formed from two triangles, PQS and QRS. Triangle PQS is isosceles, with PQ = PS = 32 cm and angle $SPQ = 56^{\circ}$. QR = 47 cm and angle $SQR = 60^{\circ}$.

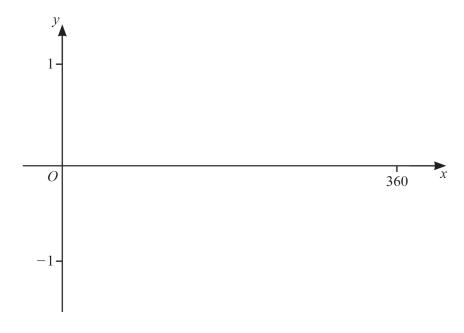
(a) Calculate SR.

SR =		cm	[4]
------	--	----	-----

(b) Calculate the shortest distance from P to SQ.

..... cm [3]

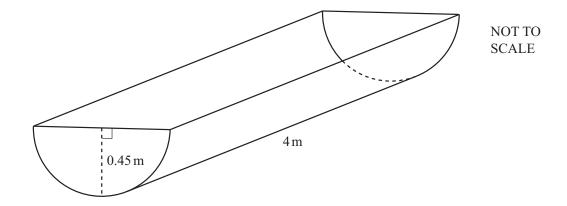
[Total: 7]


- (a) On the diagram, sketch the graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$.
- **(b)** Solve the equation $\cos x = -\frac{1}{2}$ for $0^{\circ} \le x \le 360^{\circ}$.

x = or x = [2]

[Total: 4]

[2]

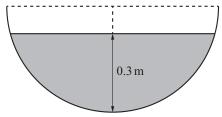

20 (a) Sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

[2]

20 (b) Solve the equation $3 \sin x + 1 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.

				<i>x</i> =	 or <i>x</i> =		. [3]
						[To	tal: 5]
21	Solve the equation	$3\sin x + 3 = 1$	for $0^{\circ} \leqslant x \leqslant 3$	360°.			
				<i>x</i> =	 or $x =$. [3]
						[To	tal: 3]

The diagram shows a horizontal container for water with a uniform cross-section.

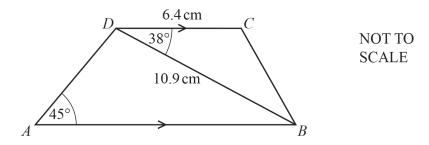

The cross-section is a semicircle.

The radius of the semicircle is 0.45 m and the length of the container is 4 m.

(a) Calculate the volume of the container.

NOT TO SCALE

(b)



The greatest depth of the water in the container is $0.3\,\mathrm{m}$. The diagram shows the cross-section.

Calculate the number of litres of water in the container. Give your answer correct to the nearest integer.

..... litres

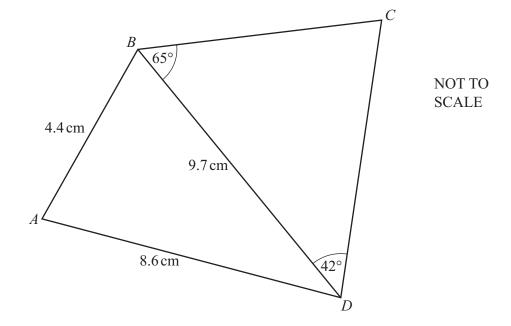
[6]

ABCD is a trapezium with DC parallel to AB. DC = 6.4 cm, DB = 10.9 cm, angle $CDB = 38^{\circ}$ and angle $DAB = 45^{\circ}$.

(a)	Find	CB
(••)	1 1110	\sim

$$CB =$$
 cm [3]

(b) (i) Find angle *ADB*.


Angle
$$ADB = \dots$$
 [1]

(ii) Find AB.

$$AB = \dots$$
 cm [3]

(c) Calculate the area of the trapezium.

[Total: 10]

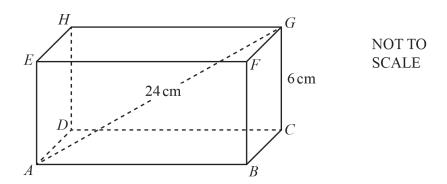
(a) Calculate angle *ADB*.

A 1 ADD	ro:
$Angle ADB = \dots$	1.3
Angle $ADD = \dots$	19

(b) Calculate *DC*.

$$DC = \dots$$
 [4]

(c) Calculate the shortest distance from C to BD.


..... cm [3]

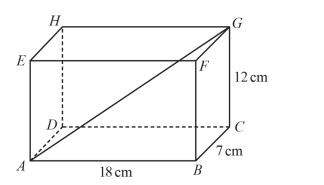
[Total: 10]

	25	A cuboid	measures	24 cm	by	12 cm	by	8 cn	n.
--	----	----------	----------	-------	----	-------	----	------	----

Calculate the length of a diagonal of the cuboid.

26

The diagram shows a cuboid ABCDEFGH. CG = 6 cm, AG = 24 cm and AB = 2BC.


(a) Calculate AB.

(b) Calculate the angle between AG and the base ABCD.

[Total: 7]

27

NOT TO SCALE

ABCDEFGH is a cuboid. AB = 18 cm, BC = 7 cm and CG = 12 cm.

Calculate the angle that the diagonal AG makes with the base ABCD.

.....[4]

[Total: 4]