Question	Answer	Marks	AO Element	Notes	Guidance
1	317	2		M1 for 137 + 180 oe	
2	[0]71	1			
3	239	2		M1 for 180 + 59 or 360 - (180 - 59) oe or indicates correct angle on diagram	
4	142°	1			
5	252	3		M2 for $180 \div (7-2)$ oe OR M1 for $180 - x + y = 360$ oe M1 for correct use of ratio	
6	142	2		M1 for 322 –180 oe or a clear diagram with both 322 or 38 marked and the reverse bearing to be found	

Question	Answer	Marks	AO Element	Notes	Guidance
7(a)	Measurement of PQ correctly scaled to km	2		M1 for correct measurement of <i>PQ</i> in cm seen or for <i>their</i> measurement [in cm] multiplied by 4	
7(b)	065	1			
7(c)	X correctly placed 7 cm from P on a bearing of 140°	2		M1 for X on bearing of 140° from P or for X 7 cm from P If 0 scored, SC1 for X on bearing of 140° from Q and 7 cm from Q	
8(a)	247	1			
8(b)	Point C correctly plotted	3		B2 for line from B 8.3 cm to 8.7 cm long or M1 for $102 \div 12$ and B1 for bearing 155° to 159°	

Question	Answer	Marks	AO Element	Notes	Guidance
9	343	2		B1 for 103 in correct position and 60 or 17 in correct position	
10	285	2		M1 for 180 + 105 or 75 or 105 seen in correct position at B	
11	M2 for $[x =] \frac{17.5}{\tan 48}$ or $[x =] \tan 42 \times 17.5$ A1 for 15.75 or 15.76	3		M1 for $\tan 48 = \frac{17.5}{x}$ or $\tan (90 - 48) = \frac{x}{17.5}$	

Question	Answer	Marks	AO Element	Notes	Guidance
12	21 600	5		B3 for 168 OR	
				M2 for $204^2 - 180^2$ or better	
				or M1 for $[]^2 + 180^2 = 204^2$ oe	
				A1 for 96 dep on M2	
				and M1 for $\frac{1}{2} (72 + their 168) \times 180$ oe	
				If zero scored, then SC1 for 72 × 180 alone or as part of total area calculation	
13	9.23 or 9.234 to 9.235	2		M1 for $\sin [38 =] \frac{BC}{15}$ or better	
14(a)	Congruent	1			
14(b)	37.5 or 37.48 to 37.49	2		$\mathbf{M1} \operatorname{forcos} [ABC =] \frac{7.3}{9.2}$	

Question	Answer	Marks	AO Element	Notes	Guidance
15(a)	$\frac{(12-2) \times 180}{12} [= 150] \text{ oe}$ or $180 - \frac{360}{12} [= 150]$	1		Accept $\frac{(2 \times 12 - 4) \times 90}{12}$ [= 150	
15(b)(i)	M2 for $\frac{3}{\cos 75}$ oe or $\frac{6 \sin 75}{\sin 30}$ A1 for 11.59	3		M1 for $\frac{3}{AO} = \cos 75$ oe or $\frac{r}{\sin 75} = \frac{6}{\sin 30}$	
15(b)(ii)A	72.8 or 72.9 or 72.82 to 72.89	2		M1 for $2 \times \pi \times 11.6$	
15(b)(ii)B	12.1 or 12.06 to 12.08	2		M1 for [6 +] <i>their</i> (b)(ii)(A) ÷ 12 oe	
15(c)	806 or 807 or 805.9 to 807.4	3		B2 for 402.9 to 403.7 OR M2 for $\frac{1}{2} \times 6 \times 11.6 \times \sin 75 \times 1$ or M1 for $\frac{1}{2} \times 6 \times 11.6 \times \sin 75 = 1$ oe	

Question	Answer	Marks	AO Element	Notes	Guidance
16(a)	87.[0] or 86.98 to 86.99	3		M2 for $\sqrt{82^2 + 55^2 - 2 \times 82 \times 55}$ oe OR M1 for $82^2 + 55^2 - 2 \times 82 \times 55 \times 6$ OR A1 for 7570 or 7566 to 7567	
16(b)	66.1 or 66.2 or 66.13 to 66.17	3		M2 for $\frac{82 \times \sin 76}{their(\mathbf{a})}$ oe or M1 for $\frac{82}{\sin C} = \frac{their(\mathbf{a})}{\sin 76}$ oe	
16(c)	13.3 or 13.30 to 13.31	3		M2 for $AG = 55 \cos 76$ oe or M1 for recognition that CG is perpendicular to AB	

Question	Answer	Marks	AO Element	Notes	Guidance
16(d)	54.1 or 54.13 and 125.9 or 125.86 to 125.87	5		B4 for 54.1 or 54.13 or 125.9 or 125.86 to 125.87 or M3 for $[\sin Q =] \frac{0.5 \times 82 \times 55 \times 20.5 \times 90 \times 20.5}{0.5 \times 90 \times 20.5}$ oe or M2 for $0.5 \times 82 \times 55 \times \sin 76 = 0.5$ oe or M1 for $0.5 \times 82 \times 55 \times \sin 76$ oe or for $0.5 \times 80 \times 90 \sin Q = the$ If B4 not scored then SC1 for two angles seen that sum to 180 (from use of sine ratio) but not 0 and 180.	$0.5 \times 60 \times 90 \times \sin Q$
17(a)	Complete method shown and evaluated	2		M1 for correct Pythagoras e.g. $120^2 + 126^2 = 174^2$	

Question	Answer	Marks	AO Element	Notes	Guidance
17(b)	18 090 cao	5		B4 for 18 081 to 18 094.1	
				OR	
				M2 for 126 × tan53	
				or M1 for $\tan 53 = \frac{x}{126}$	
				and	
				M1 for $\frac{1}{2} \times 120 \times 126$	
				or $\frac{1}{2} \times 126 \times their PS$	
				or 1	
				$\begin{vmatrix} \frac{1}{2} \times 126 \times (120 + their P) \\ oe \end{vmatrix}$	S)
				If 0 scored, SC1 for	
				evidence of rounding their answer to 4sf	

Question	Answer	Marks	AO Element	Notes	Guidance
18(a)	41.2 or 41.21 to 41.23	4		M1 for $SQ = 2 \times 32 \times \sin\left(\frac{1}{2} \times 5\right)$ oe or $\sqrt{32^2 + 32^2 - 2 \times 32 \times 32}$ oe or $\frac{32 \sin 56}{\sin((180 - 56) \div 2)}$ oe M2 for $SR^2 = 47^2 + (theirSQ)^2$ or M1 for implicit form	
18(b)	28.3 or 28.25 to 28.29	3		M2 for $32 \times \sin 62$ oe or M1 for recognition that line from P is perpendicular to SQ	
19(a)	Correct sketch Correct sketch to go through (0, 1), (360, 1) and (180, -1)	2		To go through (0, 1) and close to (360, 1) and reasonably close to (180, -1) B1 for correct cosine curve shape through (0, 1)	

Question	Answer	Marks	AO Element	Notes	Guidance
19(b)	120, 240	2		B1 for each or for two values with sum of 360	
20(a)	Correct sketch to go through (0, 0), (180, 0) and (360, 0)	2		B1 for correct sine curve shape through the origin	
20(b)	199.5 or 199.47 and 340.5 or 340.52 to 340.53	3		B2 for one correct or M1 for $\sin x = -\frac{1}{3}$ oe If 0 scored, SC1 for two reflex angles with sum of 540 or two non-reflex angles with sum of 180	

Question	Answer	Marks	AO Element	Notes	Guidance
21	221.8 or 221.81 and 318.2 or 318.18 to 318.19	3		B2 for one correct or M1 for $\sin x = -\frac{2}{3}$ oe If 0 scored, SC1 for two reflex angles with a sum of 540 or two non-reflex angles with a sum of 180	
22(a)	1.27 or 1.272 to 1.273	2		M1 for $ \left[\frac{1}{2} \times \right] \pi \times 0.45^2 \times 4 $ or $ \frac{1}{2} \times \pi \times 0.45^2 \times 4 $	

Question	Answer	Marks	AO Element	Notes	Guidance
Question 22(b)	742 or 743	Marks 6	AO Element	M5 for a method leading to the volume of water e.g. $4 \times \begin{cases} 2 \times \frac{inv \cos\left(\frac{0.15}{0.45}\right)}{360} \\ -\frac{1}{2} \times 0.45^2 \times \frac{inv \cos\left(\frac{0.15}{0.45}\right)}{360} \times \pi \end{cases}$ oe OR $2 \times \frac{inv \cos\left(\frac{0.15}{0.45}\right)}{360} \times \pi$ oe or $[2 \times] \frac{90 - inv \cos\left(\frac{0.15}{0.45}\right)}{360}$ oe or M1 for use of	$\left\{ \sin\left(2inv\cos\left(\frac{0.15}{0.45}\right)\right)\right\}$ $\times 0.45^{2}$
				$\frac{\theta}{360} \times \pi \times 0.45^2 \text{ oe}$ $\mathbf{M2} \text{ for}$ $\frac{1}{2} \times 0.45^2 \times \sin\left(2inv\cos^2\theta\right)$	$\operatorname{s}\left(\frac{0.15}{0.45}\right)\right)$

Question	Answer	Marks	AO Element	Notes	Guidance
				oe or $\frac{1}{2} \times 0.15 \times 0.45 \times \sin\left(i\right)$ oe or M1 for use of $\frac{1}{2} \times 0.45^{2} \times \sin\theta$ oe or $[2\times] \frac{1}{2} \times 0.15 \times 0.45 \times \sin\theta$ If 0 scored, SC1 for $inv\cos\left(\frac{0.15}{0.45}\right)$ or $inv\sin\left(\frac{0.15}{0.45}\right)$ or $\sqrt{0.45^{2} - 0.15^{2}}$ soi	
23(a)	7.06 or 7.058 or 7.059	3		M2 for $\sqrt{6.4^2 + 10.9^2 - 2 \times 6.4}$ oe OR M1 for $6.4^2 + 10.9^2 - 2 \times 6.4 \times 6$ oe A1 = 49.8	

Question	Answer	Marks	AO Element	Notes	Guidance
23(b)(i)	97	1			
23(b)(ii)	15.3[0]	3		M2 for $[AB =] \frac{10.9 \times \sin their}{\sin 45}$	97
				or M1 for $\frac{\sin their 97}{AB} = \frac{\sin 45}{10.9}$ oe	
23(c)	72.8 to 72.81	3		M2 for $\frac{1}{2} \times 6.4 \times 10.9 \times \sin 38 + \cos 4 = -3.4 \times 10.9 \times \sin 38 + \cos 4 = -3.4 \times 10.9 \times \sin 38 + \cos 38 + $	$\frac{1}{2} \text{ their } 15.3 \times 10.9 \times \sin 38$
				or M1 for $\frac{1}{2} \times 6.4 \times 10.9 \times \sin 38$ oe or	
				$\frac{1}{2} their 15.3 \times 10.9 \times \sin 3$ oe or M1 for height = $10.9 \times \sin 38$ oe	38

Question	Answer	Marks	AO Element	Notes	Guidance
24(a)	27[.0] or 26.97 nfww	3		M2 for $[\cos =] \frac{8.6^2 + 9.7^2 - 4.4}{2 \times 8.6 \times 9.7}$ or M1 for implicit form	<u>4²</u>
24(b)	9.19 or 9.192 to 9.193	4		B1 for [angle $BCD =]73$ seen M2 for $\frac{9.7 \times \sin 65}{\sin (180 - 65 - 42)}$ oe or M1 for $\frac{\sin (180 - 65 - 42)}{9.7} = \frac{\sin (180 - 65 - 42)}{\sin (180 - 65 - 42)}$ oe	n 65 DC
24(c)	6.15 or 6.149 to 6.151	3		M2 for $\frac{d}{their 9.19} = \sin 42 \text{ oe}$ or M1 for right angle between line from C to BD and BD soi	
25	28	3		M2 for $24^2 + 12^2 + 8^2$ or M1 for $24^2 + 12^2$ or $24^2 + 8^2$ or $12^2 + 8^2$	

Answer	Marks	AO Element	Notes	Guidance
20.8 or 20.76 to 20.79	4		B3 for [<i>BC</i> =] 10.4 or 10.38 to 10.39 or $6\sqrt{3}$ oe	
			or M2 for $(2x)^2 + x^2 + 6^2 = 24^2$ oe	
			or M1 for $24^2 - 6^2$ oe or $x^2 + 6^2$ oe or $(2x)^2 + 6^2$ oe or $x^2 + (2x)^2$ oe	
			or SC2 for final answer of $12\sqrt{5}$ or 26.8 or 26.83	
			OR	
			M3 for	
			$x^2 + \left(\frac{x}{2}\right)^2 + 6^2 = 24^2$	
			oe	
			or M2 for $x^2 + \left(\frac{x}{2}\right)^2$	
			or M1 for $x^2 + 6^2$ oe or $\left(\frac{x}{2}\right)^2 + 6^2$ oe or $24^2 - 6^2$ oe	
				20.8 or 20.76 to 20.79 4 B3 for $[BC =] 10.4$ or 10.38 to 10.39 or $6\sqrt{3}$ oe or M2 for $(2x)^2 + x^2 + 6^2 = 24^2$ oe or $x^2 + 6^2$ oe or $(2x)^2 + 6^2$ oe or $(2x)^2 + 6^2$ oe or $x^2 + (2x)^2$ oe or SC2 for final answer of $12\sqrt{5}$ or 26.8 or 26.83 OR M3 for $x^2 + \left(\frac{x}{2}\right)^2 + 6^2 = 24^2$ oe or M2 for $x^2 + \left(\frac{x}{2}\right)^2$ or M1 for $x^2 + \left(\frac{x}{2}\right)^2$ or M1 for $x^2 + 6^2$ oe or $\left(\frac{x}{2}\right)^2 + 6^2$ oe or

Question	Answer	Marks	AO Element	Notes	Guidance
26(b)	14.5 or 14.47 to 14.48	3		M2 for $\sin [] = \frac{6}{24}$ oe or M1 for recognising the correct angle GAC	
27	31.9 or 31.85	4		M3 for $\tan = \frac{12}{\sqrt{18^2 + 7^2}} \text{ oe}$ or M2 for $\sqrt{18^2 + 7^2}$ or M1 for $18^2 + 7^2$ or B1 for identifying correct angle CAG	

[Total: 130]