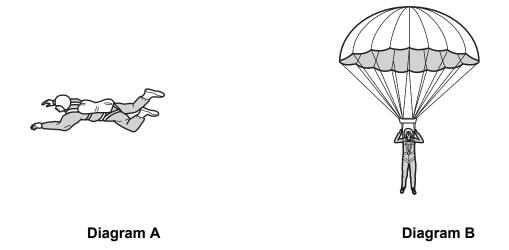

1 The graph is a speed-time graph for a car.

Calculate the distance travelled by this car between time = $2.0 \, s$ and time = $6.0 \, s$.

[Total: 3]

2	A cartakas	12 8 s to travel 200 m	
Z	A car takes	TZ.88 to traver zuum.	

Calculate the average speed of the car for this 200 m.


average speed = m/s [3]

[Total: 3]

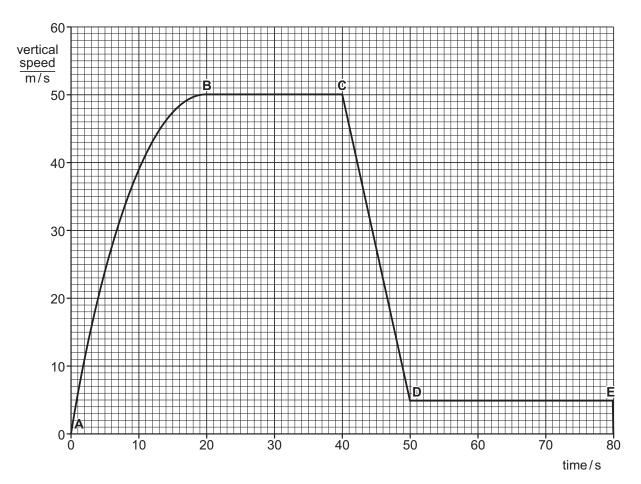
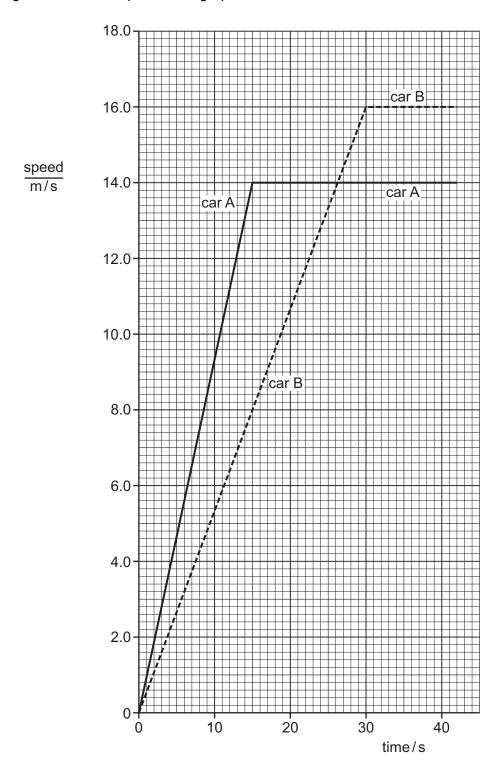

3 A skydiver jumps from an aeroplane. She falls freely with her parachute closed; then she opens her parachute.

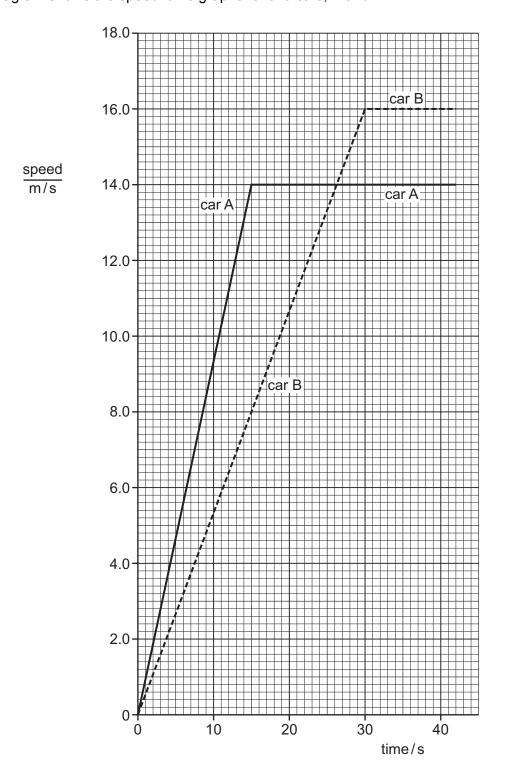
Diagram A shows the skydiver falling freely with her parachute closed.

Diagram B shows the skydiver falling with the parachute open.



The graph shows the speed-time graph for the skydiver's vertical motion, from leaving the aeroplane to landing on the ground.

Usir	ng the information from the graph:	
(a)	Describe the vertical motion of the skydiver between time = 0 and time = 20 s.	
		[1]
(b)	Determine the maximum vertical speed of the skydiver.	
	maximum speed = m/s	[1]
(c)	Determine the point, A, B, C, D or E, at which the skydiver opens her parachute.	
		[1]
(d)	Determine the distance the skydiver falls between time = 50 s and time = 80 s.	
	distance = m	[3]


[Total: 6]

Describe	the	motion	of	car	В	after	30	S.
----------	-----	--------	----	-----	---	-------	----	----

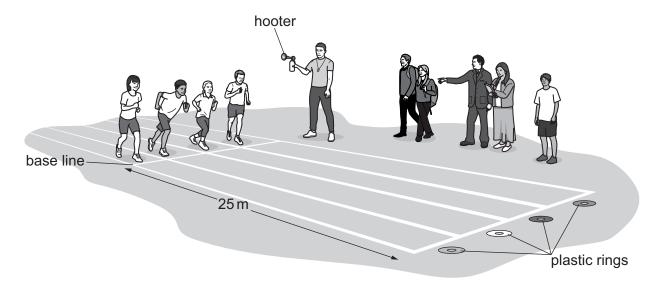
[2]

In a	a race, a child runs 500 m in 4 minutes and 20 seconds.	
(a)	Determine how many seconds there are in 4 minutes and 20 seconds.	
	time = s	[1]
(b)	Calculate the average speed of the child.	
	average speed = m/s	[3]
	[Tota	ıl: 4]

Calculate the distance moved by car B from time = 0 to time = 30.0s.

distance =	m	[3]
------------	---	-----

[Total: 3]


7 A student investigates the motion of a trolley as it travels down a slope.

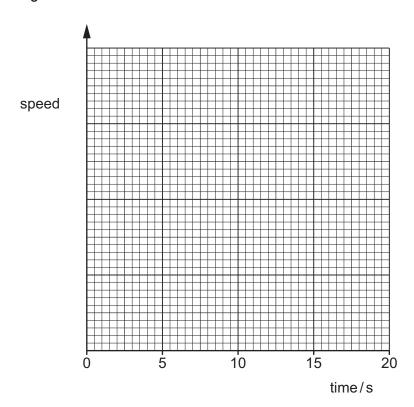
The student makes **two** measurements to determine the average speed of the trolley as it travels down the slope.

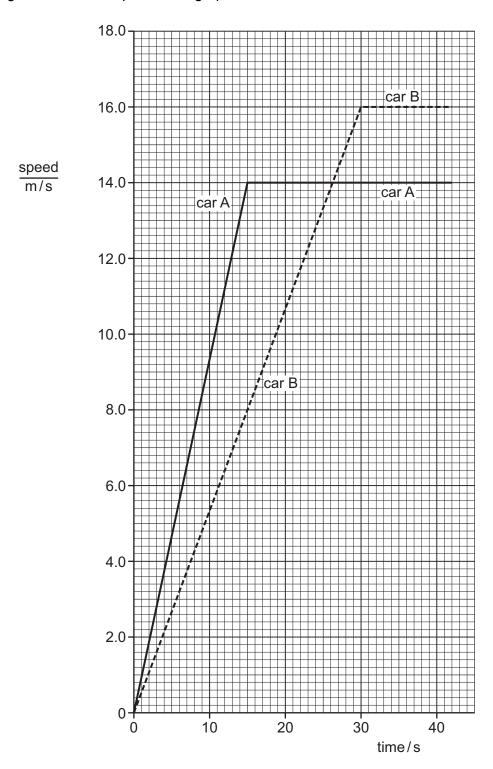
State the **two** measurements.

For each measurement, suggest the instrument used for making the measurement.

8 The diagram shows children about to run a race. They have to run 25 m, pick up a small plastic ring and run back to cross the base line.

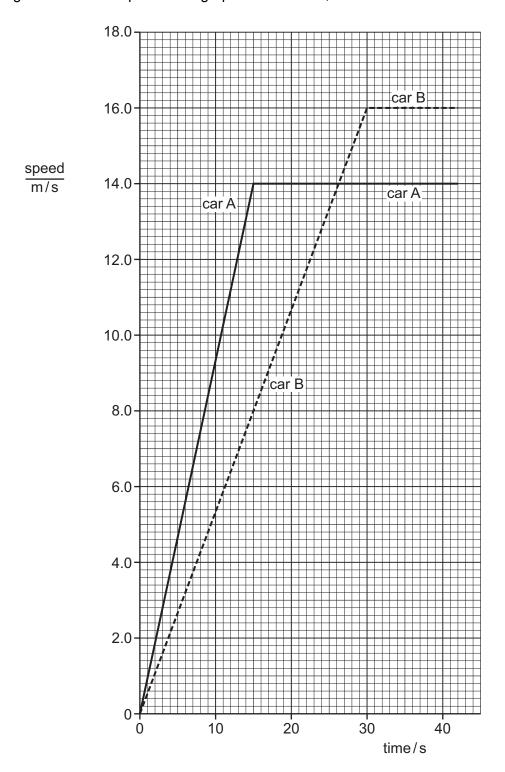
The teacher records the following information for **one** of the children.


The child starts to run at time = 0.

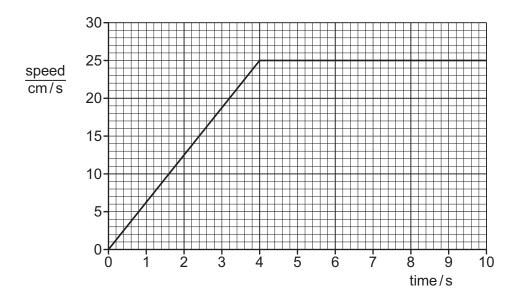

The child picks up the ring at time = $9.0 \, s$.

The child finishes the race at time = 17.0 s.

The highest speed occurs as the child finishes the race.


Using this information, sketch a speed–time graph on the grid, suggesting how the speed of this child varies during the race.

State and explain which car, A or B, has the greater acceleration during the first 10 seconds. Use information from the speed–time graphs in your explanation.


.....[2]

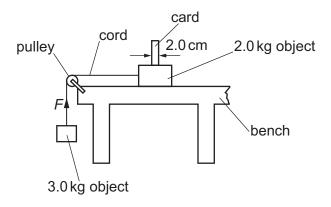
Determine the speed of car A at time = 10 s.

speed =m/s [2]

11 The diagram shows the speed–time graph for a trolley as it travels down a slope

Determine the distance moved by the trolley from time = 0 to time = 4.0 s.

distance =	CI	m [3
------------	----	-----	---


[Total: 3]

12 A battery provides energy to an electric car.

The electric car has an acceleration of $2.9\,\mathrm{m/s}^2$ when it moves from rest. The combined mass of the car and its driver is $1600\,\mathrm{kg}$.

Calculate the time taken to reach a speed of 28 m/s.

13 The diagram shows an object of mass 2.0 kg on a bench. This object is connected by a cord, passing over a pulley, to an object of mass 3.0 kg.

The 2.0 kg object is released from rest and accelerates at $4.0 \,\text{m/s}^2$.

The 2.0 kg and 3.0 kg objects have a constant acceleration.

(a) Show that the speed of the objects 0.80 s after release is 3.2 m/s.

[2]

(b) A card, of width 2.0 cm, is fixed to the 2.0 kg object. As the 2.0 kg object moves to the left, the card passes through a beam of light that is perpendicular to the card.

Using the speed given in (a), calculate the time taken for the card to pass through the beam of light.

time =	[2]
	 141

[Total: 4]

14	When a car is decelerating, there is a constant resistive force <i>F</i> on the car due to the brakes.				
	The deceleration of the car is greater than $\frac{F}{m}$ and is not constant.				
	Explain why the deceleration is not constant.				
	[2]				
	[Total: 2]				
15	Explain what is meant by deceleration.				
	[2]				
	[Total: 2]				
16	A car of mass m is travelling along a straight, horizontal road at a constant speed v .				
	At time $t = 0$, the driver of the car sees an obstruction in the road ahead of the car and applies the brakes.				
	The car does not begin to decelerate at $t = 0$.				
	Suggest one reason why the car does not begin to decelerate at $t = 0$.				
	[1]				
	[Total: 1]				
	[rotal 1]				