
1 A device for measuring gas pressure is connected to a gas supply as shown in the diagram.

(a) Determine the difference *h* between the mercury levels shown in the diagram.

h	=	 mm	[2]

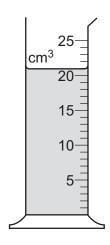
(b) The atmospheric pressure is 760 mm of mercury.

Determine the pressure of the gas supply.

pressure of gas supply = mm of mercury [1]

_					
2	A student uses a	digital stop-v	vatch to measure	the time for a	car to travel 100 m.

The diagram shows the time reading on the stop-watch.



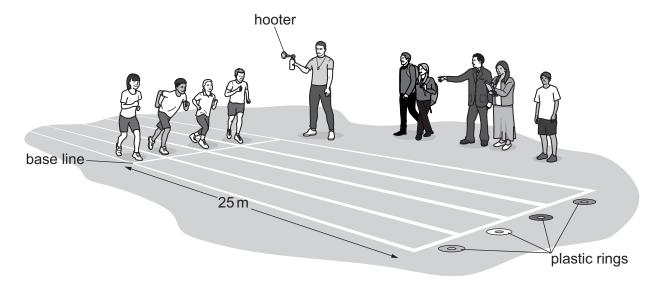
Using the information in the diagram, state the time taken to travel 100 m.

ime to travel 100 m =	=s	[1]	
-----------------------	----	----	---	--

[Total: 1]

3 The diagram shows a measuring cylinder containing some water.

(a) State the volume of the water in the measuring cylinder.

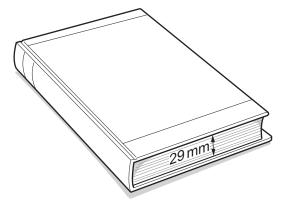

(b)	A student adds 20 drops of water to the water that is in the measuring cylinder in the diagram.
	The new volume of water in the measuring cylinder is 25 cm ³ .

Calculate the average volume of one drop of water.

average volume of one drop =	cm^3	ΓΔ.
average volume of one drop	CIII	14

[Total: 5]

4 The diagram shows children about to run a race. They have to run 25 m, pick up a small plastic ring and run back to the base line. Each child finishes when they cross the base line holding the plastic ring.

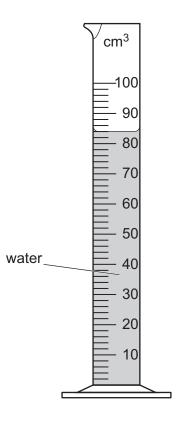

(a)	Suggest what	t paulinment th	na taachar iis	ses to measure	tha lar	outh of 25 m
laı	Suddest Wha	ı eddibillelil li	ie teachiel us	es lo illeasure	וווכ וכו	14th 01 25 m.

[1	11
 	'n

(b) Determine the total distance for the race.

[Total: 2]

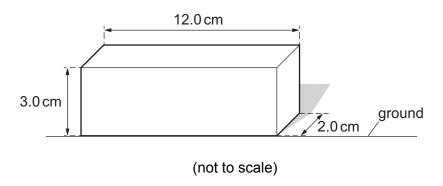
5 The diagram shows a closed textbook.



There are 270 sheets of paper in the textbook. The total thickness of the sheets is 29 mm.

Calculate the average thickness of **one** sheet of paper.

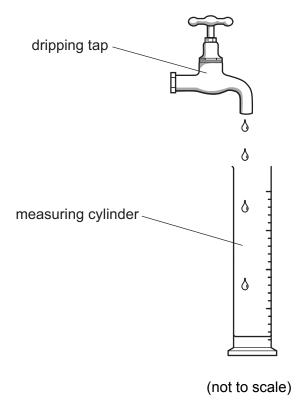
average thickness of one sheet = mm [3]


6 The diagram shows the volume of water collected in a measuring cylinder by a student.

Determine the volume of water in the measuring cylinder in the diagram.

[Total: 1]

7 The diagram shows a metal block and its dimensions



Calculate the area of the metal block in contact with the ground.

[Total: 2]

8 The diagram shows a dripping tap and a measuring cylinder. The water drops all have the same volume.

The drops fall from the tap at equal time intervals.

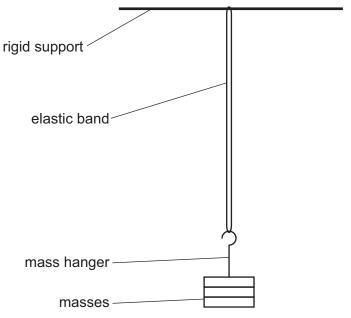
The student collects 200 of the drops in a measuring cylinder. The total volume collected is 60 cm³.

Calculate the average volume of **one** drop of water.

volume =cm ³	[3]
-------------------------	-----

9 Water is dripping from a tap into a measuring cylinder. The water drops fall from the tap at equal time intervals.

A student uses a stop-watch to measure the time taken for the tap to produce 200 drops. The diagram shows the time reading on the stop-watch.



(b) Determine the average time interval between one drop starting to fall and the next drop starting to fall.

time interval =s [2]

[Total: 4]

10 The diagram shows some masses on a mass hanger attached to an elastic band. The elastic band is stretched by the masses.

A student pulls the mass hanger down and then releases it. The mass hanger and masses oscillate up and down.

The student uses a stop-watch to time 20 oscillations. The diagram below shows the time reading on the stop-watch after the 20^{th} oscillation.

(a) Determine the time in seconds for 20 oscillations from the time shown on the stop-watch.

time for 20 oscillations =s [1]

(b) Calculate the time in seconds for one oscillation.

time for one oscillation =s [2]

11	Some students collect some drops of water from a leaking tap.		
	The students measure the volume of the water they collect.		
	State the term for the equipment that is suitable for measuring the volume accurately.		
			[1]
		[Total	: 1]