

Cambridge Lower Secondary Checkpoint

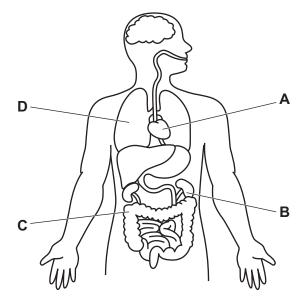
SCIENCE			0893/02
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

Paper 2


- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You should show all your working in the booklet.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

October 2023 45 minutes 1 The diagram shows the position of some organs in the human body.

(a) Circle the letter of the organ that is part of the human excretory (renal) system.

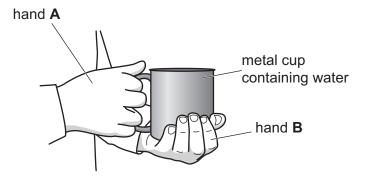
	А В	С	D	[1]
(b)	Complete these sentences about the h	numan excretory	(renal) system.	
	The function of the human excretory (r	enal) system is t	o	the
	blood to remove urea.			
	The urea is then excreted in a liquid ca	alled	·	[2]
(c)	Organs are made of cells.			
	Cells contain chromosomes.			
	Name the chemical from which chromo	osomes are mad	e.	
				[41

2 Look at the elements in Group 1 from the Periodic Table.

The elements are in the same order as the Periodic Table.

element
lithium
sodium
potassium
rubidium
caesium
francium

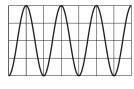
	carbon dioxide	
	Circle the gas made in this reaction.	
(c)	An element in Group 1 reacts with dilute hydrochloric acid.	
		[1]
(b)	Name the most reactive element in Group 1.	
		[1]
(a)	Describe how the melting points of the Group 1 elements change down the group.	


chlorine

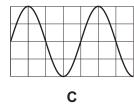
hydrogen

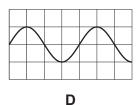
oxygen

[1]


3 Mike holds a metal cup containing water.

	(a)	The water in the metal cup is at a higher temperature than both of his hands.	
		Describe what happens to the thermal energy in the water.	
			[1]
	(b)	Mike pours the water out of the metal cup.	
		He adds ice and water to the metal cup.	
		Describe what Mike feels with hand B compared to hand A .	
			[1]
4	The	atoms in a molecule of water are joined together by covalent bonds.	
	(a)	What is a covalent bond?	
			[2]
	(b)	The formula for a molecule of ethane is C ₂ H ₆ .	
		How many atoms are bonded together in one molecule of ethane?	
			[1]


5 Priya compares different sound waveforms.


All the waveforms are drawn to the same scale.

В

Α

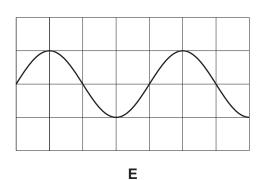
(a) Which two waveforms have the lowest amplitude?

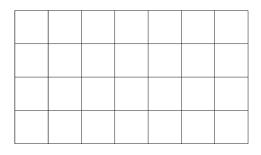
and	

[1]

(b) Which two waveforms have the lowest frequency?

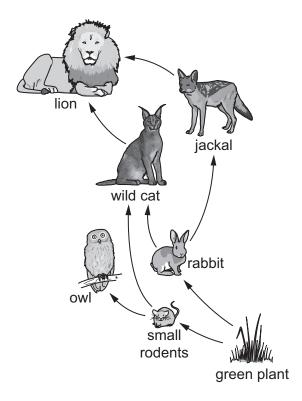
and	
alia	


[1]


(c) Which two waveforms have the highest pitch?

and	

[1]


(d) Draw a waveform on the grid with a greater loudness than waveform E.

[1]

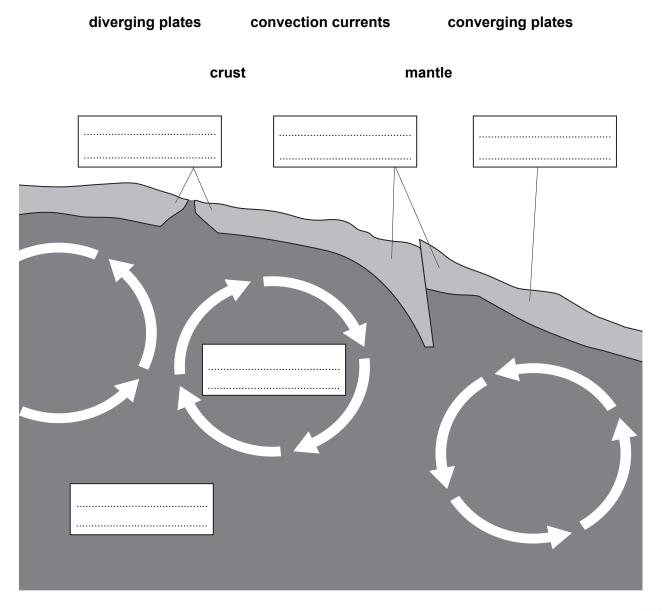
6 Look at the food web for a habitat.

NOT TO SCALE

(a) A disease decreases the number of small rodents in the habitat.

The number of owls decreases but the number of wild cats stays the same.

	Complete the sentences to explain why.
	The number of owls decreases because
	The number of wild cats stays the same because
	······································
	[2]
(b)	Explain why green plants need the Sun to survive.
	[3]


7	An objec	ct has volu	ume, mass	s and den	sity.						
	The obje	ect has a v	volume of	28 cm ³ .							
	The mas	ss of the o	bject is 22	22 g.							
	Calculat	e the den	sity of the	object.							
										g/cm ³	[2]
						•					
8	The diag	gram shov	vs part of	the Period	dic Table.						
		1							2		
		Н				•	•	-	He		
		3 Li	4 Be	5 B	6 C	7 N	8 O	9 F	10 Ne		
		11 Na	12 Mg	13 A <i>l</i>	14 Si	15 P	16 S	17 C <i>l</i>	18 Ar		
		19	20							l	
		K	Ca								
	(a) Whi	ch elemei	nt in the ta	ıble has tl	ne lowest	number o	of protons	in its aton	n?		
	` ,						·				[1]
	(b) Ider	ntify two e	elements fr	om the ta	able that a	are in the	same peri	od as the	element I	Mg.	
				an	d						[1]
	/										
	(c) Nan	ne one ele	ement fror	n the tabl	e that has	s the same	e chemica	il propertie	es as the	element i	
											[1]

9 Mia is learning about tectonic plates.

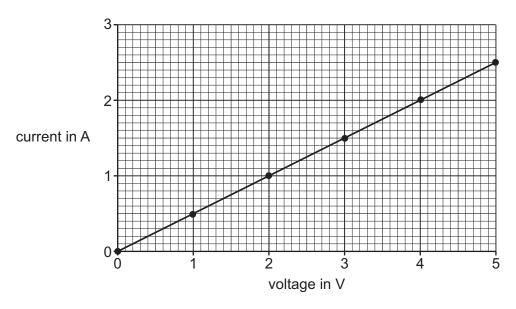
She knows that:

- diverging tectonic plates move away from each other
- converging tectonic plates move towards each other.
- (a) Label the diagram.

Choose words from the list.

[2]

(b) Mia joins a map of South America to Africa.



	Explain why the appearance of the continental coasts is evidence for tectonic plates.	
		[2
(c)	Write down one other piece of evidence for tectonic plates.	
		 1]

10 Oliver connects a resistor in an electrical circuit.

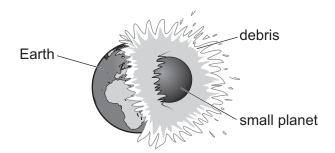
He measures the current as he increases the voltage across the resistor.

Oliver draws a graph.

(a) C	current is measured in A	(amps)	and voltage	is measured	in V	(volts).
-------	--------------------------	--------	-------------	-------------	------	----------

Write down the unit of resistance.

[1	1
г.	J


(b) Calculate the resistance of the resistor.

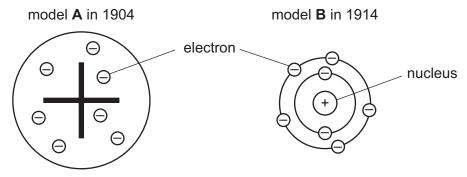
Include the equation used to calculate resistance in your answer.

resistance =	[2]

11 Scientists believe that the Moon was formed after a collision between the Earth and another small planet.

This is called the collision theory for the formation of the Moon.

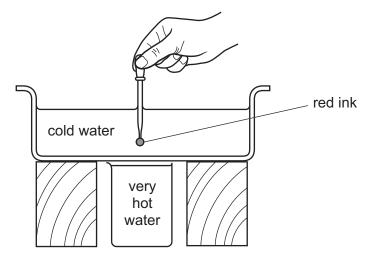
The debris from the collision collected to form the Moon.


(a) Chen collects information about the elements found on the Earth and on the Moon.

	percentage of element found on the							
element	Earth	Moon						
oxygen	45.3	44.7						
silicon	22.0	22.5						
magnesium	2.6	2.3						
iron	6.0	8.3						
calcium	3.6	3.1						

	(i)	Most of the information supports the collision theory.	
		Explain how most of this information supports the collision theory.	
			[1]
	(ii)	There is a comparison of one element that does not support the collision theory.	
		Write down the name of this element.	
			[1]
(b)	Sug	ggest two other pieces of evidence Chen collects to support the collision theory.	
	1		
	2		
			[2]

12 Theories about the structure of the atom have developed over time.


Look at the models of an atom of nitrogen.

(a)	Describe one similarity between model A and model B .	
		 [1]
(b)	Describe one difference between model A and model B .	
		[1]
(c)	Model B is still used today.	
	Suggest one strength and one limitation of using model B.	
	strength	
	limitation	
		 [2]

13 Yuri investigates convection.

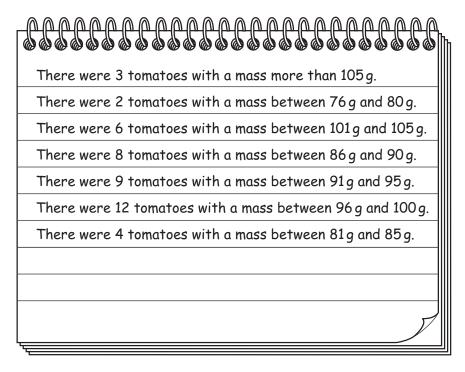
He adds a drop of red ink to the cold water as shown in the diagram.

_								
1	م ۱	Complete the	contonco to	cuadact a	toctoblo	hypothocic	for thic	invoctigation
ı	aı	Complete me	senience io	Suuuesi a	restante i	114001116212	101 HH5	IIIVESIIUAIIOII.

I predict that the red ink will move	
because	
	[1]

(b) Complete the table about safety risks and the control of risks in this investigation.

safety risk	control of risk
very hot water may burn skin	
red ink may irritate skin	
	use plastic beaker instead of glass beaker


[3]

14 Lily investigates variation in tomatoes.

Lily:

- measures the mass of different tomatoes to the nearest whole gram
- classifies the tomatoes into different groups based on their masses.

Lily writes about her results.

- (a) (i) Complete the table of results by writing the:
 - unit for the mass range
 - number of tomatoes in each mass range.

mass range	number of tomatoes
in	in mass range
76 – 80	
81 – 85	
86 – 90	
91 – 95	
96 – 100	
101 – 105	
more than 105	

	(11)	what is the best way to present the data in the table?	
			[1]
(b)	Gai	deners add nitrates to the soil to help tomato plants grow.	
	The	e nitrates are used by the plants to make a substance needed for growth.	
	Nar	me this type of substance.	
			[1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	80	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	25	Xe	xenon 131	98	찜	radon	118	Og	oganesson –			
	7			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	Н	iodine 127	85	Ąŧ	astatine	117	<u>s</u>	tennessine -			
	9			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	molonium –	116	^	livermorium -			
	5			7	Z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209	115	Mc	moscovium -			
	4			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	ti 119	82	Ър	lead 207	114	Εl	flerovium -			
	3			5	М	boron 11	13	Ρſ	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204	113	Ę	nihonium –			
										30	Zu	zinc 65	48	ၓ	cadmium 112	80	£	mercury 201	112	ပ်	copernicium			
										29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -			
dno										28	Ż	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium –			
Group										27	ဝိ	cobalt 59	45	格	rhodium 103	77	'n	iridium 192	109	¥	meitherium -			
		t T lydrogen	hydrogen 1							56	Fe	iron 56	4	R	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium			
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	В	pohrium –			
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -		
						Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>⊾</u>	tantalum 181	105	Ср	dubnium –
								ato	rels				22	j=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids				
	2			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	radium			
	_			က	:=	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	SP.	rubidium 85	55	S	caesium 133	87	ŗ	francium –			

7.1	<u></u>	lutetium 175	103	۲	lawrencium	I	
20	ΥÞ	ytterbium 173	102	9 N	nobelium	I	
69	Tm	thulium 169	101	Md	mendelevium	I	
68	ш	erbium 167	100	Fm	ferminm	1	
29	웃	holmium 165	66	Es	einsteinium	I	
99	۵	dysprosium 163	86	Ç	californium	I	
65	Д	terbium 159	26	益	berkelium	ı	
64	Вd	gadolinium 157	96	Cm	curium	1	
63	En	europium 152	92	Am	americium	I	
62	Sm	samarium 150	94	Pu	plutonium	I	
61	Pm	promethium -	93	d	neptunium	I	
09	βN	neodymium 144	92	\supset	uranium	238	
59	Ā	praseodymium 141	91	Ра	protactinium	231	
28	Ce	cerium 140	06	드	thorium	232	
22	Га	anthanum 139	89	Ac	actinium	ı	

lanthanoids

actinoids