Question	Answer	Marks	AO Element	Notes	Guidance
1(a)	Congruent	1			
1(b)	37.5 or 37.48 to 37.49	2		M1 for cos $[ABC =] \frac{7.3}{9.2}$	
2	2.1	2		M1 for $\frac{33.6 \times 25000^2}{100000^2}$ oe or answer figs 21	
3(a)	5.5	2		M1 for $\frac{x}{4.5} = \frac{9.9}{8.1}$ oe	
3(b)	16.7 or 16.73 to 16.74	2		M1 for $25 \times \left(\frac{8.1}{9.9}\right)^2$ oe or $25 \times \left(\frac{4.5}{their 5.5}\right)^2$ oe	
4	[u =] 20 [v =] 52 [w =] 108 [x =] 36	4		B1 for each	

Question	Answer	Marks	AO Element	Notes	Guidance
5	343	2		B1 for 103 in correct position and 60 or 17 in correct position	
6(a)	370 or 370.2 to 370.3	2		M1 for 864 ÷ their time	
6(b)	991 or 990.5	4		M2 for $864^2 + 928^2 - 2 \times 864 \times 928 \cos 67$ or M1 for correct implicit version A1 for 981100 to 981110	
6(c)(i)	313	2		M1 for 180 + 133 or 360 – 47	

Question	Answer	Marks	AO Element	Notes	Guidance
6(c)(ii)	[0]79.5 to [0]79.6	4		M2 for $\frac{928 \times \sin 67}{their991}$ or $\frac{864 \times \sin 67}{their991}$ oe or M1 for implicit form of either A1 for [angle $HGB = $] 59.5 to 59.6 or [angle $HBG = $] 53.4 or 53.37 to 53.42 M1 dep for their angle $HGB + 20$ leading to answer or for 133 – their angle HBG leading to answer	
7(a)	Correct sketch to go through (0, 0), (180, 0) and (360, 0)	2		B1 for correct sine curve shape through the origin	

Question	Answer	Marks	AO Element	Notes	Guidance
7(b)	199.5 or 199.47 and 340.5 or 340.52 to 340.53	3		B2 for one correct or M1 for $\sin x = -\frac{1}{3}$ oe If 0 scored, SC1 for two reflex angles with sum of 540 or two non-reflex angles with sum of 180	
8(a)	87.[0] or 86.98 to 86.99	3		M2 for $\sqrt{82^2 + 55^2 - 2 \times 82 \times 55}$ oe OR M1 for $82^2 + 55^2 - 2 \times 82 \times 55 \times 6$ OR M1 for $82^2 + 55^2 - 2 \times 82 \times 55 \times 6$	
8(b)	66.1 or 66.2 or 66.13 to 66.17	3		M2 for $\frac{82 \times \sin 76}{their(\mathbf{a})}$ oe or M1 for $\frac{82}{\sin C} = \frac{their(\mathbf{a})}{\sin 76}$ oe	

Question	Answer	Marks	AO Element	Notes	Guidance
8(c)	13.3 or 13.30 to 13.31	3		M2 for $AG = 55 \cos 76$ oe or M1 for recognition that CG is perpendicular to AB	
8(d)	54.1 or 54.13 and 125.9 or 125.86 to 125.87	5		B4 for 54.1 or 54.13 or 125.9 or 125.86 to 125.87 or M3 for $[\sin Q =] \frac{0.5 \times 82 \times 55 \times 20.5 \times 90 \times 100}{0.5 \times 90 \times 100}$ or M2 for $0.5 \times 82 \times 55 \times 100$ or M1 for $0.5 \times 82 \times 55 \times 100$ or for $0.5 \times 80 \times 100$ or for $0.5 \times 80 \times 100$ or for $0.5 \times 80 \times 100$ or for 0.5×100 or). 5 × 60 × 90 × sin <i>Q</i>

Question	Answer	Marks	AO Element	Notes	Guidance
9(a)	20.8 or 20.76 to 20.79	4		B3 for [$BC = 10.4$ or 10.38 to 10.39 or $6\sqrt{3}$ oe	
				or M2 for $(2x)^2 + x^2 + 6^2 = 24^2$ oe	
				or M1 for $24^2 - 6^2$ oe or $x^2 + 6^2$ oe or $(2x)^2 + 6^2$ oe or $x^2 + (2x)^2$ oe	
				or SC2 for final answer of $12\sqrt{5}$ or 26.8 or 26.83	
				OR	
				M3 for $x^2 + \left(\frac{x}{2}\right)^2 + 6^2 = 24^2$ oe	
				or M2 for $x^2 + \left(\frac{x}{2}\right)^2$	
				or M1 for $x^2 + 6^2$ oe or $\left(\frac{x}{2}\right)^2 + 6^2$ oe or $24^2 - 6^2$ oe	

Question	Answer	Marks	AO Element	Notes	Guidance
9(b)	14.5 or 14.47 to 14.48	3		M2 for $\sin [] = \frac{6}{24}$ oe or M1 for recognising the correct angle GAC	
10	M1 for angle $ACB = 65^{\circ}$ or angle $RPQ = 37^{\circ}$ A1 for 2 pairs of equal angles oe	2			

[Total: 55]