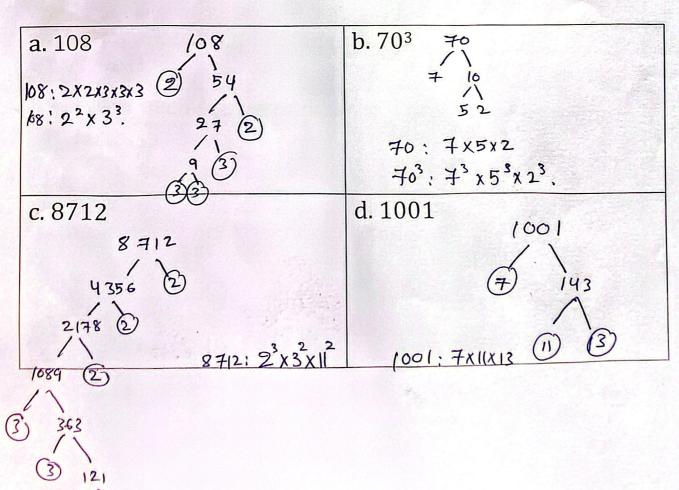
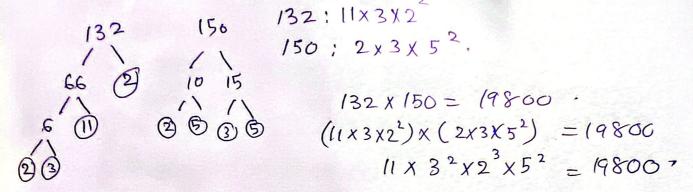
Step 4: Optional trick for checking divisibility

with Booklet

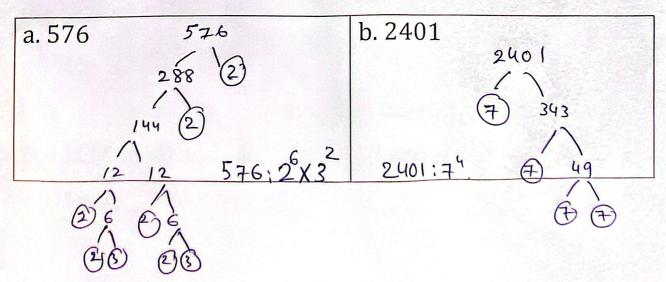

- 2: even numbers
- 3: sum of digits divisible by 3
- 5: ends with 0 or 5
- 7, 11, 13, ...: smaller prime checks or trial division

Step 5: Write as a product of primes

- Multiply all the prime numbers you divided by.
- Example: $2400=2^5 \times 3 \times 5^2$


Here are some questions.

• Write these numbers as a product of prime numbers.


 Use a factor tree to write 132 and 150 as a product of prime numbers.

132×150=19800. Use this fact to write 19800 as a product of prime numbers.

Work out the following.

Write each square number as a product of its prime factors.

I THING I ACCOLIZATION OF A SQUARE NUMBER:

- A square number is made by multiplying a number by itself.
- When you write it as prime factors, all the powers are even.

Example:

- · 16=4²
- Prime factorization of 4: 2×2
- Prime factorization of 16: 2²×2²=2⁴
 Simple rule: All exponents in a square number's prime factorization are even.
- When a square number is written as a product of prime numbers, what can you say about the factors?

a. the HCF of 40 and 28

b. The LCM of 40 and 28

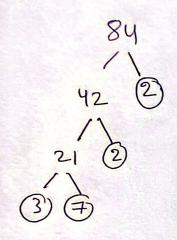
Write 396 as a product of prime numbers. Then write 168
 as a product of prime numbers.

a. Find the HCF of 396 and 168

$$HCF = 2 \times 3$$
 $4 \times 3 = (12)$

b. Find the LCM of 396 and 168

- Write 343 as a product of prime numbers. Then write 546
 as a product of prime numbers.
- a. Find the HCF of 343 and 546

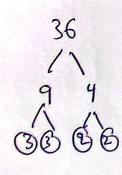

b. Find the LCM of 343 and 546

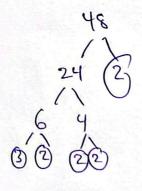
$$LCM = \frac{3}{7} \times 2 \times 3 \times 13$$

 $343 \times 6 \times 13$
 $26,754$

• The HCF of two numbers is 6. The LCM of the two numbers
is 72. What are the two numbers?
HCF=6 LCM=72 HCFXLCM=6x77
-> since the HCF is 6, then the two Number were searching
for must be = multiples of 6 1 of the two
6, 12, 18, 24, 30, 36, 42, (the product of the be 432), be 432
 Read Rebeca's exam answers. Mark as correct or incorrect or incomplete. Correct the mistakes. The first one has been done for you.
a. A prime factor is a number that cannot be divided by a whole number greater than one. To example, 2 and 3 are prime factors of 12.
Incorrect, A prime Factor is any prime number divides equally into another humber
b. A factor tree is a diagram that shows all the prime factors of a number.
Incomplete It shows an the factors of a number, ending
with Prime factors 1
c. The index tells us how many times to multiply the base number by itself.
Correcti
d.HCF stands for highest calculated factor.
Incorrect HCF stands for highest common factor.
TO MARION FACTOR

Date:

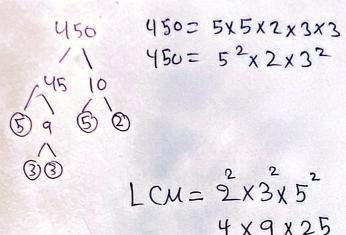

Q1. Write 84 as a product of its Prime Factors.


$$84 = 2 \times 2 \times 7 \times 3$$

 $84 = 2^2 \times 7 \times 3$

Q2. Draw a Factor Tree for 275, then write it as a product of its prime factors.

Q3. Find the HCF of 36 and 48.



$$36 = 2 \times 2 \times 3 \times 3$$

 $36 = 2^2 \times 3^2$

$$HCF = 2 \times 3' = 4 \times 3 = 12$$

Q4. Find the LCM of 450 and 60.

$$60 = 3 \times 2 \times 2 \times 5$$

$$6 = 3 \times 2^{2} \times 5$$

$$6 = 3 \times 2^{2} \times 5$$

Q5. Two numbers are 24 and 36. Use prime factorization to find their HCF and 24= 23 X3

36 x 25 = 900 -

Q6. Write 36² as a product of Prime numbers.

Square roots and cube roots

Evaluate.

$$4^3 = 4x4x4264$$

$$3^3 = 3x3x3-27$$

$$4^3 = 4 \times 4 \times 4 \times 6 = 3^3 = 3 \times 3 \times 3 = 10^3 = 10 \times 10 \times 10 = 1000$$

$$6^3 = 6 \times 6 \times 6 = 216$$

$$6^3 = 6 \times 6 \times 6 = 216$$
 $(-2)^3 = (-2) \times (-2)(-2) \times (-2) \times (-2)$

$$(-5)^3 = -5x - 5x - 5z - 1259^3 = 9x9x9 = 7297^3 = 7x7x7 = 343$$

$$\sqrt[3]{27} = 3$$

$$\sqrt[3]{125} = 5$$

$$\sqrt[3]{-8} = -2$$

$$\sqrt[3]{216} = 6$$

$$\sqrt[3]{-64} = -4$$

$$\sqrt[3]{1000} = 10$$

$$\sqrt[3]{64} = 4$$

$$\sqrt[3]{-1} = -1$$

$$\sqrt[3]{512} = 8$$

Evaluate.

$$8^2 = 8 \times 8 = 64$$

$$3^2 = 3x3z9$$

$$10^2 = 10 \times 10 = 100$$

$$6^2 = 6x6 = 36$$

$$12^2 = 12 \times 12 = 194$$
 $7^2 = 7 \times 7 = 49$

$$5^2 = 5 \times 5 = 25$$

$$9^2 = 9 \times 9 = 81$$

$$11^2 = 11 \times 11 = 121$$

$$\sqrt{16} = 4 \circ R - 4$$

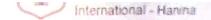
$$\sqrt{9} = 3 \text{ er } -3$$

$$\sqrt{4} = 20R - 2$$

$$\sqrt{25} = 5 \text{ or } -5$$

$$\sqrt{49} = 708 - 7$$

$$\sqrt{100} = 10 \text{ or } -10$$


$$\sqrt{64} = 8 \text{ or } -8 \quad \sqrt{36} = 6 \text{ or } -6$$

$$\sqrt{36} = 6 \text{ or } -6$$

$$\sqrt{121} = 110R - 11$$

$$\sqrt{144} = 12 \circ R - 12$$

$$\sqrt{81} = 9 \circ R - 9$$
 $\sqrt{144} = 12 \circ R - 12$ $\sqrt{225} = 15 \circ R - 15$

Unit 1

Name: Answer key.

Lesson 1.4

Grade 7A

Date:

Indices

Homework (3)

Directions: Rewrite each of the following exponents in expanded form and then solve. The first example has already been completed for you.

1.)
$$2^3 = 2 \times 2 \times 2 = 8$$

6.)
$$8^3 = 8 \times 8 \times 8 = 512$$

2.)
$$4^2 = 4 \times 4 = 16$$

7.)
$$10^5 = 10 \times 10 \times 10 \times 10 = 100,000$$

3.)
$$3^3 = 3 \times 3 \times 3^2 27$$

8.)
$$12^2 = 12\chi/2 = 144$$
.

4.)
$$5^4 = 5x5x5x5 = 625$$

9.)
$$7^4 = \frac{7}{4} \times 7 \times 7 \times 7 = 2401$$

5.)
$$6^2 = 6 \times 6 = 36$$

10.)
$$1^8 = \frac{1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1}{2}$$

Directions: Rewrite each of the following using exponents. The first example has already been completed for you.

11.)
$$9 \times 9 \times 9 = 9^3$$

16.)
$$8 \times 8 \times 8 \times 8 \times 8 = 8$$

12.)
$$6 \times 6 \times 6 \times 6 = 6^4$$

17.)
$$2 \times 2 \times 2 = 2^{3}$$

13.)
$$10 \times 10 \times 10 = _{0}^{3}$$

18.)
$$7 \times 7 \times 7 \times 7 \times 7 \times 7 = \frac{3}{4}$$

14.)
$$4 \times 4 \times 4 = 4^3$$

19.)
$$3 \times 3 = 3^2$$

15.)
$$12 \times 12 = 12^{2}$$

20.)
$$5 \times 5 \times 5 \times 5 = 5^4$$

$$(a^h)^c = a^{h \times c}$$

PART I: Use the power rule to solve each of the following. The first problem has already been solved for you.

1.
$$(7^2)^3 = 7^6$$

2.
$$(2^5)^4 = 2^{2\delta}$$

3.
$$(10^6)^2 = 10^{12}$$

4.
$$(8^4)^4 = 8^{6}$$

5.
$$(12^4)^2 = 12^8$$

6.
$$(3^9)^3 = 3^{27}$$

7.
$$(2^7)^3 = 2^{2}$$

8.
$$(16^6)^8 = 16^{48}$$

9.
$$(5^{12})^4 = 5^{48}$$

10.
$$(13^{14})^6 = 13^{84}$$

11.
$$(24^6)^{11} = 24^{66}$$

12.
$$(6^9)^3 = 6^{27}$$

PART II: Use the power rule to solve each of the following. The first problem has already been solved for you.

13.
$$(x^5)^2 = x^{10}$$

14.
$$(y^4)^9 = \frac{}{}$$

15.
$$(c^2)^2 = C^4$$

16.
$$(m^{12})^{10} = \underline{m'^{20}}$$

17.
$$(g^{11})^2 = g^{22}$$

18.
$$(x^{15})^4 = \chi^{60}$$

19.
$$(w^7)^9 = \omega^{63}$$

20.
$$(x^{14})^4 = X^{56}$$

21.
$$(y^7)^7 = y^{49}$$

22.
$$(z^3)^{17} = 2^{51}$$

23.
$$(r^{25})^5 = r^{125}$$

24.
$$(x^{16})^6 = X^{96}$$

Name: Answer key.

Lesson 1.4

Grade 7A

Date:

Indices

Homework (4)

The Product Property

$$a^b \times a^c = a^{b+c}$$

PART I: Use the product property to solve each of the following. The first problem has already been solved for you.

1.
$$4^3 \times 4^2 = 4^5$$

2.
$$2^5 \times 2^3 = 2^9$$

3.
$$9^5 \times 9^5 = 9^{0}$$

4.
$$3^3 \times 3^4 = 3^7$$

5.
$$11^2 \times 11^{10} = 11^{12}$$

6.
$$8^4 \times 8^8 = \frac{8^{12}}{12}$$

7.
$$5^9 \times 5^5 = 5^{19}$$

8.
$$14^{19} \times 14^{11} = 14^{30}$$

9.
$$6^{16} \times 6^6 = 6^{22}$$

10.
$$10^{13} \times 10^{14} = 10^{77}$$

11.
$$7^7 \times 7^{21} =$$

12.
$$16^{24} \times 16^{19} = 16^{43}$$

PART I: Use the product property to solve each of the following. The first problem has already been solved for you.

13.
$$x^3 \times x^7 = x^{10}$$

14.
$$a^6 \times a^2 = \alpha^8$$

15.
$$y^3 \times y^3 =$$

16.
$$x^7 \times x^5 = X^{12}$$

17.
$$b^{13} \times b^{9} = b^{27}$$

18.
$$m^{11} \times m^{15} = m^{26}$$

19.
$$y^{20} \times y^{10} =$$

20.
$$s^{23} \times s^6 =$$

21.
$$x^{49} \times x^{51} = X^{100}$$

22.
$$c^{33} \times c^{51} =$$

23.
$$j^9 \times j^{10} =$$

$$a^b \div a^c = a^{b-c}$$

$$a^b \div a^c = a^{b-c}$$
 or $\frac{a^b}{a^c} = a^{b-c}$

PART I: Use the quotient property to solve each of the following. The first problem has already been solved for you.

1.
$$9^7 \div 9^5 = 9^2$$

7.
$$\frac{17^{30}}{17^6} = 17^{24}$$

2.
$$11^{12} \div 11^{5} = 11^{7}$$

8.
$$15^{17} \div 15^7 = 15^{10}$$

3.
$$\frac{5^7}{5^3} = 5^4$$

9.
$$10^{28} \div 10^{16} = 10^{12}$$

4.
$$2^{10} \div 2^{1} = 2^{9}$$

10.
$$\frac{10^4}{10^2} = \frac{2}{10^2}$$

5.
$$\frac{16^{21}}{16^{19}} = \frac{16^2}{16^2}$$

11.
$$3^{50} \div 3^{27} = 3^{23}$$

6.
$$8^{24} \div 8^9 = 8^{15}$$

12.
$$\frac{32^{40}}{32^{10}} = \frac{32^{30}}{32^{10}}$$

PART II: Use the quotient property to solve each of the following. The first problem has already been solved for you.

13.
$$x^9 \div x^4 = \underline{x^5}$$

19.
$$\frac{p^{100}}{p^{64}} = p^{36}$$

14.
$$y^{16} \div y^6 = y^{10}$$

20.
$$x^{29} \div x^7 = \underline{x^{22}}$$

15.
$$\frac{k^{27}}{k^9} = \frac{k^{18}}{1}$$

21.
$$y^{50} \div y^{25} = 4$$

16.
$$y^{39} \div y^{36} =$$

22.
$$\frac{w^{19}}{w^9} = \omega^{(0)}$$

17.
$$\frac{g^{50}}{g^{49}} = \frac{g^{1}}{g^{1}}$$

23.
$$x^{88} \div x^{36} = \frac{x^{52}}{x^{52}}$$

18.
$$m^{60} \div m^{40} = m^{20}$$

24.
$$\frac{c^{19}}{c^2} =$$

Itiplying the number by itself three times is called Cubing.

ample: $2 \times 2 \times 2 = 8$.

ımber	Cube
	1
	8
	27
	64
	125

gative numbers cubed keep their negative sign.

Example: $(-2)^3 = -8$

worksheet(1)

ibe Roots

be root is the number which gives the original number when cubed.

camples: $\sqrt[3]{27} = 3$ and $\sqrt[3]{-8} = 2$.

• Find the square of -8
$$-8x-8=64$$

$$-8x-8=6u$$

• Find
$$\sqrt{81}$$

Find the cube of -4.
$$-4x-4x-4=-64$$

Identify the type of number:

Classify each number as Natural (N), Integer (Z), or Rational (Q):

- a) 7 (N) (Z) and (Q)
- b)-12 (Z) and (Q)
- c) 3/4 Q
- d) 0.25 Q
- e) 15 (N)(Z)(Q).

Fill in the blanks:

- a) A number greater than 0 and without a fractional part is called a Natured.
- b) Numbers that can be written in the form p/q, where p and q are integers are called Rational.
- c) Numbers like -3, 0, 5 are <u>Tytegers</u>,

Convert into rational form:

Write the following numbers as fractions:

a)
$$0.6 \longrightarrow$$

Lesson 3.1

Grade 7A

Date:

Multiplying and dividing by 0.1 and 0.01

Worksheet (2)

Objective(s): Use knowledge of place value to multiply and divide integers and decimals by 0.1 and 0.01.

Quick Rules for Students

- Multiply by $0.1 \rightarrow \text{divide by } 10$
- Multiply by $0.01 \rightarrow \text{divide by } 100$
- Divide by $0.1 \rightarrow$ multiply by 10
- Divide by $0.01 \rightarrow \text{multiply by } 100$

Q1. Calculate the following.

Q2. Find the missing

Q3. Yara uses the formula E=0.1C, where E is the extra cost and C is the cost of an item.

Work out the extra cost when C= \$344.5

Q4. A store charges a delivery fee equal to 0.01 of the cost of an order.

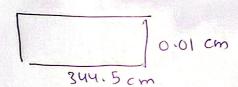
• If the order is \$256, how much is the delivery fee?

Q5. A phone company charges 10% (which is 0.1) of the monthly bill as a late payment fee.

If the bill is \$82.50, how much is the late fee?

Q6. A school trip costs a total of \$64. The teacher says that this is **0.1 of the total** money collected from all students.

· How much money did the students collect in total?



Q7. A rectangle has a width of 0.1 m and a length of 765 m.

Find its area.

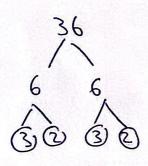
Q8. The length of a rectangle is 344.5 cm and its width is 0.01 cm.

Work out its area.

Q9. A right-angled triangle has a base of 0.1 m and a height of 68 m.

Find its area.

Area =
$$\frac{1}{2}xbxh$$
 34
 $\frac{1}{2}x0.1 \times 68$
 $\frac{3}{3}4 \times 0.1$
 $\frac{3}{3}4 = 10 = 3.4 \text{ m}^2$


Q10. A right-angled triangle has an area of 22.25 m² and a height of 0.1 m.

Work out the base.

Area =
$$\frac{1}{2} \times b \times h$$

 $2 \times (22 \cdot 25) = (\frac{1}{2} \times 6 \cdot 1 \times b) \times 2$
 $\frac{44.56}{6.1} = \frac{0.1}{0} \times 10^{-5}$
 $b = 44.50 \div 0.1$

Q1. Draw a factor tree for 330, then write it as a product of prime factors.

Q2. Write 36^2 as a product of prime factors.

$$36 = 2 \times 2 \times 3 \times 3$$

$$36 = 2 \times 2 \times 3 \times 3$$

$$36^{2} = (2^{2} \times 3^{2})^{2}$$

$$36^{2} = 2^{4} \times 3^{4}$$

- Q3. If $180=2^2\times3^2\times5$ and $54=2\times3^3$. Use these facts to find
- a. The HCF of 180 and 54

b. The LCM of 180 and 54

$$LCM = 2 \times 3 \times 5$$

 $4 \times 27 \times 5$
 20×27
 540

Q4. Work out

a.
$$(3+5) \times -4$$

8 x - 4 = -32

Q5. Round the following to the nearest whole number to estimate the answer.

a.
$$(-6.1)^2$$
 $(-6)^2 = -6 \times -6 = 36$.

b.
$$-11.2 \times 2.95$$
 $-11 \times 3 = -33$

Q6. Find the value of x.

a.
$$-15 \div x = 3$$

 $-15 \div 3 = -5$
 $86 \times 2 = -5$

b.
$$16 \div x = -2$$

 $16 \div -2 = -8$
 $80 \times 2 - 8$