Learner's Book answers

Unit 1

Getting started

- 1 a 2, 3, 5, 7, 11, 13, 17, 19
 - b The even numbers 22, 24, 26, 28 are not prime. 21 and 27 are multiples of 3. 25 is a multiple of 5. That just leaves 23 and 29 as prime numbers.
- 2 a 1, 2, 3, 6, 9, 18
 - b 18, 36, 54, 72, 90
 - c 6
 - d 36
- 3 a -3
- b -9
- c -18

- d -2
- e -2
- f 4

- 4 a square
- b cube
- c cube
- d both square and cube
- e square
- square
- 5 a 10
- b 5
- **c** 9

Exercise 1.1

- 1 a, b, c and d Many different trees are possible. They all end with 2, 2, 2, 3, 5.
- 2 a and b Different trees are possible but they should end with 2, 2, 3, 3, 3.
 - $c 108 = 2^2 \times 3^3$
 - d peer discussion
- 3 a Different trees are possible.
 - **b** $200 = 2^3 \times 5^2$
 - peer discussion
 - d There are two different possible trees.
- 4 a Many trees are possible.
 - **b** $330 = 2 \times 3 \times 5 \times 11$

- 5 a 20 → i 2² × 5
 - b 24 ii 2×3×7

iii $2^2 \times 3^2 \times 5$

- d 50 iv 2×52
- e 180 v 2³ × 3
- 5 a 315 b 1000 c 396
 - d 784 e 867
- **a** $2^2 \times 7$ **b** $2^2 \times 3 \times 5$ **c** $2^3 \times 3^2$
 - d $3^2 \times 17$ e $2 \times 5 \times 19$ f $5^2 \times 11$
- 8 a and b

Number	Product of primes
35	5 × 7
70	2 × 5 × 7
140	$2^2 \times 5 \times 7$
280	$2^{3} \times 5 \times 7$
560	24 × 5 × 7
1120	25 × 5 × 7

- 9 a 7×11×13
- b 2² × 7 × 11 × 13
- c 2×3×7×11×13
- 10 a $132 = 2^2 \times 3 \times 11$
- **b** $150 = 2 \times 3 \times 5^2$
- c 2³ × 3² × 5² × 11
- 11 a i 3×5
- ii 3² × 5²
- iii 2²×7
- iv 24×72
- $v = 2^2 \times 3^2$
- vi 24 × 34
- b The indices for n² are double the indices for n.
- c 96² = 2⁵ × 3 × 2⁵ × 3 = 2¹⁰ × 3². Double the indices for each factor. This method will work for all numbers.

- 4	~		- 4
-1	_	-	- 4
- 1	_	-	

280

13 a 30

900

14 a 18

540

15 a
$$3^2 \times 5$$

 3×5^{2}

15

16 a 1260, many trees are possible.

peer discussion

17 a
$$2^2 \times 3^2 \times 11$$

 $2^3 \times 3 \times 7$

5544

986

19 $63 = 3^2 \times 7$ and $110 = 2 \times 5 \times 11$; they have no common prime factors so the HCF is 1.

b 1739

If x and y are different prime numbers, the HCF is 1 and the LCM is xy

peer discussion

Exercise 1.2

1 a
$$-3 \times 4 = -12$$
; $-3 \times 3 = -9$;
 $-3 \times 2 = -6$; $-3 \times 1 = -3$;
 $-3 \times 0 = 0$; $-3 \times -1 = 3$; $-3 \times -2 = 6$;
 $-3 \times -3 = 9$; $-3 \times -4 = 12$ and so on.

The first number is always -3. The second number goes down by 1 each time. The answer goes up by 3 each time.

c
$$-5 \times 4 = -20$$
; $-5 \times 3 = -15$;
 $-5 \times 2 = -10$; $-5 \times 1 = -5$;
 $-5 \times 0 = 0$; $-5 \times -1 = 5$; $-5 \times -2 = 10$;
 $-5 \times -3 = 15$; $-5 \times -4 = 20$ and so on. The first number is always -5 . The second number goes down by 1 each time. The answer goes up by 5 each time.

- The product of two negative numbers is the same as the product of the corresponding positive numbers. For example, $-6 \times -4 = 6 \times 4 = 24$. You could write this as $-a \times -b = a \times b$.
- learners' own sequence

peer discussion

-10

10 c

10 d

49

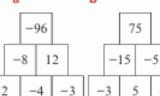
88

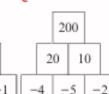
30

-18

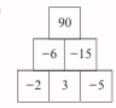
48

48


-30


-33

25


There are many possible answers.

Zara is incorrect. One possible statement is that the top number is 90, -150 or -60.

-8

11 a
$$-24 \div 6 = -4 \text{ or } -24 \div -4 = 6$$

learners' examples

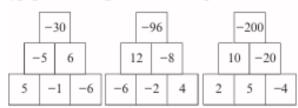
c
$$14 \div -2 = -7 \text{ or } 14 \div -7 = -2$$

learners' examples

learners' own conjectures

peer discussion

7


3

5

Ь

c

14 a

- **b** 6
- c -3
- d -3
- 15 a x = -32
- b x=45
- c x=-8
- d x = -5
- 16 a -3
- b −3

. .

- **d** 5
- 17 a 1500
- b -1200

c 7

d -5

Exercise 1.3

1 a 49

- b 49
- c 343
- d -343

2 a 5

- b -3
- c -1
- d -2
- 3 a x=10 or -10
- **b** x = 12 or -12
- x = 1 or -1
- d x=0
- e no solution
- 4 a x=6
- **b** x = -3
- c x=-1
- d x = -5
- 5 a 27
- b no solution

c 9

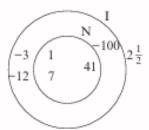
- d -9
- 6 a $\sqrt{8^2} = \sqrt{64} = 8$ as the calculator only gives the positive square root, and $\sqrt{(-8)^2} = \sqrt{-8 \times -8} = \sqrt{64} = 8$, so the difference is 0.
 - **b** $\sqrt[3]{4^3} \sqrt[3]{(-4)^3} = 4 (-4) = 4 + 4 = 8$
- 7 The integer is 10 or -10 so the cube is $10^3 = 1000$ or $(-10)^3 = -1000$
- 8 a 3×13 = 39
- **b** x = 39 or -39
- 9 a $-5^2 = -25$ but $(-5)^2 = +25$
 - b There is no difference: $-5^3 = -(5 \times 5 \times 5)$ = -125 and $(-5)^3 = -5 \times -5 \times -5 = -125$

- 10 a $3^2 + 4^2 = 9 + 16 = 25 = 5^2$
 - b i True: $(-3)^2 + (-4)^2 = 9 + 16 = 25 = (-5)^2$
 - ii True:

$$12^2 + (-5)^2 = 144 + 25 = 169 = (-13)^2$$

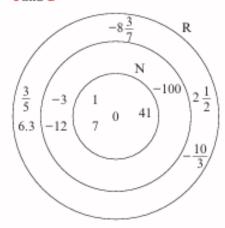
- iii False: $8^2 = 64$ but $-10^2 6^2 = -100 36 = -136$ which is
- not the same. peer discussion
- 11 a i $2^2 + 2 = 4 + 2 = 6$
 - ii $(-3)^2 + (-3) = 9 3 = 6$
 - **b** i $3^2 + 3 = 9 + 3 = 12$
 - ii x = -4
 - c x=4 or -5
 - One solution is a positive integer n and another is -(n+1).

Another equation like this is $x^2 + x = 30$ which has the solution x = 5 or -6


- e peer discussion
- 12 a

х	x - 1	$x^3 - 1$	$x^2 + x + 1$		
2	1	7	7		
3	2	26	13		
4	3	63	21		
5	4	124	31		

b The third column divided by the fourth column = the second column.


That is
$$(x^2 + x + 1) \div (x^3 - 1) = x - 1$$

- The next row is 6, 5, 215, 43 and $215 \div 43 = 5$
- d The result is the same for negative values of x.
- e peer discussion
- 13 a 5, -500, 16
- b 5, 16
- c all six numbers: $5, \frac{1}{5}, -500, 16, -4.8, 99\frac{1}{2}$
- 14 a and b

Learners may omit $2\frac{1}{2}$ from the Venn diagram.

c and d

Peer discussion may lead to argument about 6.3 which is rational because it can be written as $6\frac{3}{10}$.

Exercise 1.4

Power											
Number	1	2	4	8	16	32	64	128	256	512	1024

2

Power	30	31	32	33	34	35	36	37	3°
Number	1	3	9	27	81	243	729	2187	6561

- 3 $2^3 \times 2^2 = 2^5$
- $2^4 \times 2^3 = 2^7$
- $2^2 \times 2^5 = 2^7$
- iv $2^1 \times 2^7 = 2^8$
- $2^4 \times 2^5 = 2^9$
- Add the indices to get the index of the answer. Learners' own examples.
- The same rule applies. Learners' own examples.
- The rule works for powers of any positive integer.

- 66

- 10⁵ 5
- 20^{6}
- 15^{6} c
- d 5⁸
- 6561 × 3 = 19683
- b 15625×5=78125
- 3^2
- 95
- 12^{2}
- d 15⁷
- The first part is correct because $4^2 = 16 = 2 \times 2 \times 2 \times 2 = 2^4$. The second part is not correct because $4^3 = 4 \times 4 \times 4 = 64$ but $3^4 = 3 \times 3 \times 3 \times 3 = 81$

- 10^{9}
- 10^{12}

- 2^{6}
- 39
- - 5^{7} d 10^{9}

- 36 11 a
 - i 2^{6}
- Ħ
- 56
- iii 46

 15^{8}

 N^6

- 10^{12}
- N^8
- N^{15}
- To find a power of a power you multiply the indices $(N^a)^n = N^{ab}$
- 12 a $2^6 \div 2^2 = 2^4$ i
- $3^4 \div 3^1 = 3^3$
- $2^9 \div 2^4 = 2^5$
- $36 \div 32 = 34$
- $3^2 \div 3^2 = 3^0$
- learners' own examples
- When you divide powers you subtract the indices.
- peer discussion
- 13 a

14

- 10^{3}
- 15^{2}

- 81 or 8
- 2^{4}

 9^{3}

2º or 1

- 59
- 12^s
- 7^{9}

- 100 or 1 g
- Yes: $(5^2)^3 = 5^2 \times 5^2 \times 5^2 = 5 \times 5 \times 5 \times 5 \times 5 \times 5$

$$=(5\times5\times5)\times(5\times5\times5)=(5^3)^2$$

- Yes
- $3^{2} \times 5^{2}$ 16 a
- $3^{3} \times 5^{3}$
- $3^{5} \times 5^{5}$
- $3^8 \times 5^8$
- 17 a 5^{2}

- 5^{0}
- You might suggest 5-2.

Check your progress

- Different trees are possible. They all end with 2, 5, 5, 7
 - $350 = 2 \times 5^2 \times 7$
 - $112 = 24 \times 7$
 - 14 d
 - 2800

b No:
$$-9 \times -11 = 99$$

c No:
$$45 \div -9 = -5$$

5 a
$$x = 6$$
 or -6

$$\mathbf{c} = x = 2$$

d
$$x = -3$$

b 84

 $d = 8^9$

Unit 3

Getting started

1.4

- a 45 180 Ь 8200 d 460
- 7 34.2 Ь
- 31.2 d
- B 12.5 3 A 7.2 B 0.8
- 4.59 0.6723 54.789 12.05030

Exercise 3.1

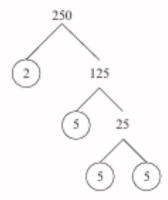
- 2 20 200 0.2Ċ Ь 400 c 0.4d 40
- 3 a learners' answers
 - Sofia: When I multiply 56 by 0.01, I move the digits 5 and 6 two places to the right in the place value table. This gives me an answer of 0.56

Arun: When I multiply 56 by 0.01, I move the decimal point two places to the left. This gives me an answer of 0.56

- a 6.2 5.5 12.5
 - d 0.320.376.55
 - 7.5 0.04
- 20 200
 - 2000 2 d
- 400 4000
 - 40 000 40
- learners' answers
 - $0.45 \div 0.1 = 4.5$ and $78 \div 0.01 = 7800$
- 70 5220 а
 - d 6.7 200 850
 - 722.5 32 g
- 1.8 0.236
 - d 450 c
- 10 a Ь c d

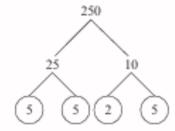
- 11 a 0.01 0.10.01
 - 0.10.1d 0.1
- 12 a 12.5 g 0.8 g
 - Yes, multiplying by 0.1 is the same as finding 10%.
 - 1%. Multiplying by 0.01 is the same as finding 1%.
- A, F and J all equal 2.4, B, E and H all equal 24, C, G and I all equal 240
 - D is left over and equals 2400. Any two calculations that give 2400, e.g. 240 ÷ 0.1, 24000 × 0.1 or 240000 × 0.01
- 14 125
- 15 a learners' answers

Example: $-4 \times 0.1 = -0.4$, which is not greater than zero


learners' answers

Example: $0.4 \div 0.01 = 40$, which is not greater than 100

> Workbook answers


Exercise 1.1

1 (

No. The 125 can only become 5 × 25 and 25 as a factor of primes must be 5 × 5.

c

- d $250 = 2 \times 5^3$
- 2 a & b Many trees are possible but all end with 2, 2, 3, 5, 5.
 - $300 = 2^2 \times 3 \times 5^2$
- 3 a i 2×3
- 1 2×3×5
- iii 2×3×5×7
- b 2×3×5×7×11=2310; multiply the last number by the next prime
- 4 a 42
 - b 1764
 - c 74088
- 5 a Many trees are possible
 - **b** $8712 = 2^3 \times 3^2 \times 11^2$
- 6 a 96=2⁵×3
 - b 97 is a prime number
 - e 98 = 2 × 7²
 - d $99 = 3^2 \times 11$

b
$$70^2 = 2^2 \times 5^2 \times 7^2$$

$$c 70^3 = 2^3 \times 5^3 \times 7^3$$

$$v = 3^2 \times 5^2$$

$$viii = 5^4$$

- b There is an even number of each prime factor.
- Using the result of part b, it is the square of 2²×3×5×7.

1800

- 9 a $3^2 \times 7 = 63$
 - b 3×5=15
 - $2^2 \times 3 = 12$
- 10 a 360 b 300 c
- 11 a $104 = 2^3 \times 13$
 - b 130=2×5×13
 - c 26
 - d 520
- 12 a $135 = 3^3 \times 5$
 - **b** $180 = 2^2 \times 3^2 \times 5$
 - e 45
 - d 540
- 13 a 343 = 73
 - b 546=2×3×7×13
 - c 7
 - d 26754
- 14 630
- 15 a 24 b 1848
- 16 a 48 = 2⁴ × 3 and 25 = 5²; there are no common prime factors, therefore the HCF is 1.
 - b 1200
- 17 18 and 24

Exercise 1.2

- $-1 \times -4 = 4$; $-3 \times -4 = 12$; $-5 \times -4 = 20$
- ć 99
- 196

Exercise 1.3

- 196
- 400
- 900
- -216
- -1000c
- impossible

x = 9 or -9

- -5
- -9

- x = 5 or -5
- no solution

x = 15 or -15

- x = 6
- x = -6

- x = -10
- x = -20
- x = 23 or -23
- no solution
- x = 23
- x = -23
- true
- false
 - true
- true
- true
- 8

a	X	-3	-2	-1	0	1	2
	$x^2 + x$	6	2	0	0	2	6
	$x^3 + x$	-30	-10	-2	0	2	10

- x = -2 or 1
 - x = 1
- a Yes. If x = 5 then

$$x^3 - x = 5^3 - 5 = 125 - 5 = 120$$

- $x^3 x = -125 -5 = -120$
- 10 a 64=26
 - **b** $2^6 = (2^3)^2 = 8^2 \text{ and } (2^2)^3 = 4^3$

No. If x = -5 then

- c 729 = 36
- d $3^6 = (3^3)^2 = 27^2$ and $(3^2)^3 = 9^3$
- 1 is both a square number and a cube number. So is $4^6 = 4096$ or $5^6 = 15625$; other answers are possible.
- 11 $x^6 = 64$
 - So $(x^3)^2 = 64$
 - So $x^3 = 8$ or -8
 - If $x^3 = 8$ then x = 2
 - If $x^3 = -8$ then x = -2
 - There are two possible answers, x = 2 or -2

- 120
- A, B, D, F in one group and C, E in the other

32

2 -4-9 -1224 54 -6 -20-45 10

-16

35

-8

- Ь -5
- 35

72

5

- 24 -66
- 81
- d 16
- $(-6)^2 + (-8)^2 (-10)^2 = 36 + 64 100 = 0$
- 8
- 96 -12-8-6 3 -2
- b If 3 and -2 are swapped and -1 and 4 are swapped, then the top number will be 3456.
- 1×-6 or -1×6 or 2×-3 or -2×3
 - 1×6 or -1×-6 or 2×3 or -2×-3
- 63 + -9 = -7 or 63 + -7 = -9
 - -84 + 12 = -7 or -84 + -7 = 12
- 11 a -6

- 13

-4

- -12
- 12 a
- -8

- 13
 - 270 15 18
- 14 a

15 a

- 12

-40

- -12
- -4
- 16 a True. -3 × (-6 × -4) = -3 × 24 = -72 and $(-3 \times -6) \times -4 = 18 \times -4 = -72$
 - b False. $-24 \div (-4 \div -2) = -24 \div 2 = -12$ and $(-24 \div -4) \div -2 = 6 \div -2 = -3$

Exercise 1.4

- 1 a 3^3 b 7^4 c 12^6 d 15^5
- 2 a 6^6 b 10^7 c 3^9 d 14^7
- 3 a $2^0 + 2^1 + 2^2 + 2^3 = 1 + 2 + 4 + 8 = 15 = 16 1 = 2^4 1$
 - **b** $2^6 1$
 - No. 3⁰ + 3¹ + 3² + 3³ = 1 + 3 + 9 + 27 = 40 and 3⁴ - 1 = 81 - 1 = 80 so they are not equal.
- 4 a 56 b 156 c 79 d 320
- 5 a 2² b 2⁶ c 3⁶
- 6 a 5⁸ b 5¹² c 5¹⁶
- 7 a 4³ b 7²
 - c 153 d 150 or 1
- 8 a 8^2 b 5^4 c 2^8 d 3^3
- e 12° or 1
- 9 a 6^3 b 6^4 c 6^8 d 6^6
- 10 a 27 b 33
 - c 24 or 42 d 30 or 1
- 11 a 53 b 56 c 512
- 12 a 12⁸ b 12¹² c 12²
- 13 No, Marcus is not correct.

 $2^4 = 2 \times 2 \times 2 \times 2 = 16$ and $4^2 = 4 \times 4 = 16$ so these are equal.

However $3^4 = 3 \times 3 \times 3 \times 3 = 81$ and $4^3 = 4 \times 4 \times 4 = 64$ and these are not equal.

Exercise 3.1 1 a 2 b 7 C 8 d 7.5 2 3 5 8 6.5 a ¢ 3 12 1.2 0.12120 a b ¢ 4 40 70 200250 a Ь ¢ d 1200 5 500 3000 a 200 b Ċ. 1601600 6 1.6 16 a Ċ. 3 7 a 3.3 Ь 99.9 Ċ. 0.870.77f 0.7 c 7 0.07g 50 56 556 8 a Ь Ċ. 5.5 d 500 f 560 5560 55 g 9 2.7 0.279270 a Ь 2 c C 10 a d \times b \times ÷ C f \times

11 a 0.1 b 0.1 c 0.01 d 0.1

e 0.01 f 0.01

12 D is the odd one out as it equals 9600.

A, B and C all equal 0.96

13 a 0.12m² b \$1.95

14 a $b = \frac{2A}{b}$ b 23.2 m

15 2.34

16 a 0.1 + 0.1 = 1 which is not bigger than 1

b learners' examples; any number smaller than 1.00