

Unit 1

Name:	Lesson 1.3	Grade 7A
Date:	Square roots and cube roots	Worksheet (1)

Objectives:

- Find the squares of positive and negative integers and their corresponding square roots.
- Find the cubes of positive and negative integers and their corresponding cube roots.
- Learn to recognize natural numbers, integers and rational numbers.

Squares

Multiplying a number by itself is called squaring.

Number	Square
1	1
2	4
3	9
4	16
5	25

Both positive and negative numbers squared give a positive result.

• Example:
$$(-3)^2 = -3 \times -3 = 9$$

 $(3)^2 = 3 \times 3 = 9$

Square Roots

• Square root is the opposite of squaring.

• Example: $\sqrt{9} = 3 \text{ or } -3 \text{ because } 3^2 = 9 \text{ and } (-3)^2 = 9$

Cubes

Multiplying the number by itself three times is called **Cubing.**

Example: $2 \times 2 \times 2 = 8$.

Number	Cube
1	1
2	8
3	27
4	64
5	125

Negative numbers cubed keep their negative sign.

• Example: $(-2)^3 = -8$

Cube Roots

Cube root is the number which gives the original number when cubed.

Examples: $\sqrt[3]{27} = 3 \text{ and } \sqrt[3]{-8} = 2.$

• Find the square of -8

• Find $\sqrt{81}$

• Find the cube of -4.

Natural Numbers

- **Definition:** counting numbers and zero.
- · Always positive.
- Examples: 0, 1, 2, 3, 4, 5 ...
- **Tip to recognize:** Ask yourself, "Can I count objects with this number starting from 1?"
 - \circ \emptyset 3 \rightarrow Yes, you can count 3 apples.
 - \circ **X** -2 \rightarrow No, negative numbers are not natural numbe

Integers

- **Definition:** All **whole numbers** plus **negative numbers**.
- **Examples:** ..., -3, -2, -1, 0, 1, 2, 3 ...
- **Tip to recognize:** Ask: "Is this a whole number, or its negative?"
 - \circ \checkmark -5 \rightarrow Integer

 - \circ \checkmark 7 \rightarrow Integer
 - \circ **X** 1/2 \rightarrow Not an integer

Rational Numbers

- **Definition:** Numbers that can be written as a **fraction**, where **p** and **q** are integers and $\mathbf{q} \neq \mathbf{0}$.
- Examples: 1/2, -3/4, 5 (5 = 5/1), 0.25 (0.25 = 1/4)
- Integers and fractions are included in the set of rational numbers.
- Tip to recognize: Ask: "Can I write it as a fraction?"
- $\sqrt{2} \rightarrow 2/1 \rightarrow \text{Rational}$
- $\sqrt{3/5} \rightarrow \text{Rational}$

Not all decimal numbers are rational, but **some are**, depending on the type of decimal.

Types of decimal numbers

- 1. Terminating decimals
- Example: 0.5(1/2), 2.75(11/4), 0.125(1/8), 0.75(3/4)
- These can always be written as fractions
- So all terminating decimals are **rational**.
 - 2. Repeating decimals
 - Example: 0.3333(1/3)...,1.272727(14/11)...
 - These can also be written as fractions
- ✓ All repeating decimals are rational.

Conclusion

- All terminating and repeating decimals are rational.
- Decimals that are non-terminating and non-repeating are irrational.
- A terminating decimal is any decimal that has a finite number of digits after the decimal point.

Identify the type of number:
Classify each number as Natural (N), Integer (Z), or Rational (Q):
a) 7
b) -12
c) 3/4
d) 0.25
e) 15
Fill in the blanks:
a) A number greater than 0 and without a fractional part is called a
b) Numbers that can be written in the form p/q, where p and q are integers are
called
c) Numbers like -3, 0, 5 are
Convert into rational form:
Write the following numbers as fractions:
a) 0.6
b) 2.75
c) -5